Cho biết x, y, z khác 0 và\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2.\)
Cmr : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Áp dụng BĐT Bunhia... cho 2 bộ số (a;b;c) và (x;y;z), ta có: }\)
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
\(\text{Dấu = xảy ra }\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\text{(đpcm)}\)
Chả biết có đúng không '-'
Sửa lại đề:\(\left(ax+by+cz\right)\rightarrow\left(ax+by+cz\right)^2\)
Ta có:\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2aybx-2bzcy-2azcx=0\)
\(\Rightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)
Vì\(\left(ay-bx\right)^2\ge0\)
\(\left(bz-cy\right)^2\ge0\)
\(\left(az-cx\right)^2\ge0\)
Suy ra:\(\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2\ge0\)
Mà\(\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}ay-bx=0\\bz-cy=0\\az-cx=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}ay=bx\\bz=cy\\az=cx\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{b}{y}=\frac{c}{z}\\\frac{a}{x}=\frac{c}{z}\end{cases}}\)\(\left(x,y,z\ne0\right)\)
\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(đpcm\right)\)
Vậy...
Linz
Ta có: \(bc(y-z)^{2}+ac(x-z)^{2}+ab(x-y)^{2}\)
\(=(abx^2+cax^2)+(bcy^2+aby^2)+(caz^2+bcz^2)-2(ax.by+by.cz+cz.ax)\)
\(=ax^2(2017-a)+by^2(2017-b)+cz^2(2017-c)-2(ax.by+by.cz+cz.ax)\)
\(=2017(ax^2+by^2+cz^2)-[a^2x^2+b^2y^2+c^2z^2+2(ax.by+by.cz+cz.ax)]\)
\(=2017(ax^2+by^2+cz^2)-(ax+by+cz)^2\)
\(=2017(ax^2+by^2+cz^2)\)
Vậy \(P=\dfrac{1}{2017}\)
bài của bạn Phạm Quốc Cường phải là 2007 chứ không phải 2017
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{a+b+c}{x+y+z}=k\)
\(\Rightarrow\hept{\begin{cases}a=kx;b=ky;c=kz\Rightarrow a^2=k^2x^2;b^2=k^2y^2;c^2=k^2z^2\\a+b+c=k\left(x+y+z\right)\end{cases}}\)
Có: \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{x^2+y^2+z^2}{\left(kx^2+ky^2+kz^2\right)^2}=\frac{x^2+y^2+z^2}{k^2\left(x^2+y^2+z^2\right)^2}=\frac{1}{k^2\left(x^2+y^2+z^2\right)}\)
\(=\frac{1}{k^2x^2+k^2y^2+k^2z^2}=\frac{1}{a^2+b^2+c^2}\)(đpcm)
\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)
\(\Leftrightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(ax+by+cz\right)^2=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
Mà \(\left(ax+by+cz\right)^2=a^2x^2+b^2y^2+c^2x^2+2abxy+2acxz+2bcyz\)
Nên \(a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2=2abxy+2acxz+2bcyz\)
\(\Leftrightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2abxy-2acxz-2bcyz=0\)
\(\Leftrightarrow\left(a^2y^2-2abxy+b^2x^2\right)+\left(a^2z^2-2acxz+c^2x^2\right)+\left(b^2z^2-2bcyz+c^2y^2\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}ay-bx=0\\az-cx=0\\bz-cy=0\end{cases}\Rightarrow\hept{\begin{cases}ay=bx\\az=cx\\bz=cy\end{cases}\Rightarrow}\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{c}{z}\end{cases}}}\)
\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\) (đpcm)