K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2020

BĐT đã cho tương đương với:

\(\left(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}\right)^2-2\left[\dfrac{ab}{\left(b-c\right)\left(c-a\right)}+\dfrac{bc}{\left(c-a\right)\left(a-b\right)}+\dfrac{ca}{\left(a-b\right)\left(b-c\right)}\right]\ge2\left(\cdot\right)\).

Mặt khác ta có: \(\dfrac{ab}{\left(b-c\right)\left(c-a\right)}+\dfrac{bc}{\left(c-a\right)\left(a-b\right)}+\dfrac{ca}{\left(a-b\right)\left(b-c\right)}=\dfrac{ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\dfrac{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-1\).

Do đó \(\left(\cdot\right)\Leftrightarrow\left(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}\right)^2\ge0\) (luôn đúng).

BĐT đã cho dc c/m.

 

26 tháng 7 2018

T đề nghị ban EDOGAWA CONAN không dùng nick k\này hỏi rồi lấy nick chính trả lời và tự tick nữa. T biết hai cậu là 1 mà không muốn nói thôi.

P/s:Nếu thế nữa t sẽ báo phynit.

26 tháng 7 2018

Đặt : \(x=\dfrac{a+b}{a-b}\) ; \(y=\dfrac{b+c}{b-c}\) ; \(z=\dfrac{c+a}{c-a}\)

Ta có : \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

\(\Leftrightarrow xy+yz+zx=-1\)

\(\left(x+y+z\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge0\)

\(\Leftrightarrow x^2+y^2+z^2\ge2\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(b+c\right)^2}{\left(b-c\right)^2}+\dfrac{\left(c+a\right)^2}{\left(c-a\right)^2}\ge2\left(đpcm\right)\)

16 tháng 1 2023

`VT = (b-c)/((a-b)(a-c)) + (c-a)/((b-c)(b-a)) +(a-b)/((c-a)(c-b)) = 2/(a-b) + 2/(b-c) + 2/(c-a)`

`=-((a-b-a+c)/((a-b)(a-c))+(b-c-b+a)/((b-c)(b-a))+(c-a-c+b)/((c-a)(c-b)))`

`=-((a-b)/((a-b)(a-c))-(a-c)/((a-b)(a-c))+(b-c)/((b-c)(b-a))-(b-a)/((b-c)(b-a))+(c-a)/((c-a)(c-b))-(c-b)/((c-a)(c-b)))`

`= 1/(c-a)+1/(a-b)+1/(a-b)+1/(b-c)+1/(b-c)+1/(c-a)`

`=2/(a-b)+2/(b-c)+2/(c-a)=VP(đpcm)`

16 tháng 1 2023

đỉnh zợ :0

NV
5 tháng 4 2022

1.

BĐT cần chứng minh tương đương:

\(\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)

Ta có:

\(\left(ab-1\right)^2=a^2b^2-2ab+1=a^2b^2-a^2-b^2+1+a^2+b^2-2ab\)

\(=\left(a^2-1\right)\left(b^2-1\right)+\left(a-b\right)^2\ge\left(a^2-1\right)\left(b^2-1\right)\)

Tương tự: \(\left(bc-1\right)^2\ge\left(b^2-1\right)\left(c^2-1\right)\)

\(\left(ca-1\right)^2\ge\left(c^2-1\right)\left(a^2-1\right)\)

Do \(a;b;c\ge1\)  nên 2 vế của các BĐT trên đều không âm, nhân vế với vế:

\(\left[\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\right]^2\ge\left[\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\right]^2\)

\(\Rightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Câu 2 em kiểm tra lại đề có chính xác chưa

NV
5 tháng 4 2022

2.

Câu 2 đề thế này cũng làm được nhưng khá xấu, mình nghĩ là không thể chứng minh bằng Cauchy-Schwaz được, phải chứng minh bằng SOS

Không mất tính tổng quát, giả sử \(c=max\left\{a;b;c\right\}\)

\(\Rightarrow\left(c-a\right)\left(c-b\right)\ge0\) (1)

BĐT cần chứng minh tương đương:

\(\dfrac{1}{a}-\dfrac{a+b}{bc+a^2}+\dfrac{1}{b}-\dfrac{b+c}{ac+b^2}+\dfrac{1}{c}-\dfrac{c+a}{ab+c^2}\ge0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)+a\left(c-b\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)

\(\Leftrightarrow c\left(b-a\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{b^3+abc}\right)+a\left(c-b\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{c^3+abc}\right)\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)\left(b^3-a^3\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c^3-a^3\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)^2\left(a^2+ab+b^2\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c-a\right)\left(a^2+ac+c^2\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)

Đúng theo (1)

Dấu "=" xảy ra khi \(a=b=c\)

27 tháng 12 2020

\(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ca\right)\left(a-abc\right)\)

\(\Leftrightarrow a^2b+ab^2c^2-a^3bc-b^2c=b^2a+a^2bc^2-ca^2-ab^3c\)

\(\Leftrightarrow a^2b-ab^2-b^2c+ca^2=a^2bc^2-ab^3c+a^3bc-ab^2c^2\)

\(\Leftrightarrow\left(a-b\right)\left(ab+bc+ca\right)=abc\left(a-b\right)\left(a+b+c\right)\)

\(\Leftrightarrow ab+bc+ca=abc\left(a+b+c\right)\Leftrightarrow a+b+c=\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(đpcm\right)\)

NV
12 tháng 1

Trước hết ta có:

\(\dfrac{ab}{\left(b-c\right)\left(c-a\right)}+\dfrac{ac}{\left(b-c\right)\left(a-b\right)}+\dfrac{bc}{\left(c-a\right)\left(a-b\right)}\)

\(=\dfrac{ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\dfrac{ab\left(a-b\right)+b^2c-a^2c+ac^2-bc^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\dfrac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\dfrac{\left(a-b\right)\left(ab-ac-bc+c^2\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\dfrac{\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-1\)

Do đó:

\(\left(\dfrac{a}{b-c}\right)^2+\left(\dfrac{b}{c-a}\right)^2+\left(\dfrac{c}{a-b}\right)^2-2+2\)

\(=\left(\dfrac{a}{b-c}\right)^2+\left(\dfrac{b}{c-a}\right)^2+\left(\dfrac{c}{a-b}\right)^2+2\left(\dfrac{ab}{\left(b-c\right)\left(c-a\right)}+\dfrac{ac}{\left(a-b\right)\left(b-c\right)}+\dfrac{bc}{\left(c-a\right)\left(a-b\right)}\right)+2\)

\(=\left(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}\right)^2+2\ge2\) (đpcm)

AH
Akai Haruma
Giáo viên
31 tháng 8 2023

Lời giải:
Đặt $\frac{a+b}{a-b}=x; \frac{b+c}{b-c}=y; \frac{c+a}{c-a}=z$. Khi đó:

$xy+yz+xz=\frac{(a+b)(b+c)}{(a-b)(b-c)}+\frac{(a+b)(c+a)}{(a-b)(c-a)}+\frac{(b+c)(c+a)}{(b-c)(c-a)}$

$=\frac{(a+b)(b+c)(c-a)+(b+c)(c+a)(a-b)+(c+a)(a+b)(b-c)}{(a-b)(b-c)(c-a)}=-1$
Suy ra:

$(\frac{a+b}{a-b})^2+(\frac{b+c}{b-c})^2+(\frac{c+a}{c-a})^2=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)$

$=(x+y+z)^2+2\geq 2$

Ta có đpcm.

16 tháng 11 2018

\(\frac{a^4}{\left(a^2-b^2+c^2\right)\left(a^2+b^2-c^2\right)}=\frac{a^4}{\left[\left(a-b\right)\left(a+b\right)+c^2\right]\left[\left(a-c\right)\left(a+c\right)+b^2\right]}\)

\(\frac{a^4}{\left[-c\left(a-b\right)+c^2\right]\left[-b\left(a-c\right)+b^2\right]}=\frac{a^4}{4bc\left(b+c\right)^2}=\frac{a^4}{4a^2bc}\)

Tương tự với 2 phân thức còn lại, ta cũng có : \(\frac{b^4}{b^4-\left(c^2-a^2\right)^2}=\frac{b^4}{4ab^2c};\frac{c^4}{c^4-\left(a^2-b^2\right)^2}=\frac{c^4}{4abc^2}\)

\(VT=\frac{a^4}{4a^2bc}+\frac{b^4}{4ab^2c}+\frac{c^4}{4abc^2}=\frac{a^4bc+ab^4c+abc^4}{4a^2b^2c^2}=\frac{abc\left(a^3+b^3+c^3\right)}{4a^2b^2c^2}\)

\(VT=\frac{a^3+b^3+c^3}{4abc}\)

Mà \(a+b+c=0\) nên \(a^3+b^3+c^3=3abc\) ( tự cm ) 

\(\Rightarrow\)\(VT=\frac{3abc}{4abc}=\frac{3}{4}\) ( đpcm ) 

Chúc bạn học tốt ~