cho x =\(\frac{13}{b-16}\)với b thuộc Z
xác định b để:
a) x >1
b) 0 < x < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,4x^3+ax+b⋮x-2\\ \Leftrightarrow4x^3+ax+b=\left(x-2\right)\cdot a\left(x\right)\)
Thay \(x=2\Leftrightarrow32+2a+b=0\Leftrightarrow2a+b=-32\left(1\right)\)
\(4x^3+ax+b⋮x+1\\ \Leftrightarrow4x^3+ax+b=\left(x+1\right)\cdot b\left(x\right)\)
Thay \(x=-1\Leftrightarrow-4-a+b=0\Leftrightarrow a-b=-4\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) ta có hệ \(\left\{{}\begin{matrix}2a+b=-32\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-36\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-12\\b=-8\end{matrix}\right.\)
2.x + y = xy
\(\Rightarrow\)x=y (x-1)
\(\Rightarrow\)x : y = x -1
\(\Rightarrow\)x - 1 = x + y
\(\Rightarrow\)y = - 1
- Nếu y = 1 có:
x + 1 = x
\(\Leftrightarrow\)1 = 0 (loại)
- Nếu y =-1 có
x - 1 = x
\(\Leftrightarrow\)x = \(\frac{1}{2}\)
thay vào thấy tỏa mãn
Vậy x = 1 \(\frac{1}{2}\); y = \(-\)1
ủng hộ nha!
ta có : P=\(-\frac{3}{4}.\frac{5}{7}.x.\left(-\frac{9}{11}\right).\left(-\frac{3}{13}\right)=-\frac{405}{4004}.x\)
a) khi P>0=> x<0 => x mang đấu âm
b) P=0=> x=0=> x k âm cũng không dương
c) P<0=> x>0=> x mang dấu dương
a) P>0 thì x là số âm (-)
b) P=0 thì x =0 ( không thuộc số dương và số âm nên không có dấu)
c) P<0 thì x là số dương (+)
a) Tam thức \(2{x^2} + 3x + m + 1\) có \(\Delta = {3^2} - 4.2.\left( {m + 1} \right) = 1 - 8m\)
Vì \(a = 2 > 0\) nên để \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(\Delta < 0 \Leftrightarrow 1 - 8m < 0 \Leftrightarrow m > \frac{1}{8}\)
Vậy khi \(m > \frac{1}{8}\) thì \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\)
b) Tam thức \(m{x^2} + 5x - 3\) có \(\Delta = {5^2} - 4.m.\left( { - 3} \right) = 25 + 12m\)
Đề \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m < 0\) và \(\Delta = 25 + 12m \le 0 \Leftrightarrow m \le - \frac{{25}}{{12}}\)
Vậy \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi \(m \le - \frac{{25}}{{12}}\)
a)
A=0
\(x\left(x-\dfrac{4}{9}\right)=0\)
x=0 hoặc x-4/9=0
x=0 hoặc x=4/9
b)
A>0
\(x\left(x-\dfrac{4}{9}\right)>0\)
TH1
x>0 và x-4/9 >0
x>0 và x>4/9
TH2
x<0 và x-4/9<0
x<0 và x<4/9
c)
A<0
\(x\left(x-\dfrac{4}{9}\right)< 0\)
TH1
x<0 và x-4/9>0
x<0 và x>4/9
TH2
x>0 và x-4/9 <0
x>0 và x<4/9
a) x > 1 => \(\frac{13}{b-16}\)> 1 => b-16< 13 => b < 29 ( b thuộc Z )
b) 0<x<1 => 0 < \(\frac{13}{b-16}\)< 1 => \(\hept{\begin{cases}b-16>0\\b-16>13\end{cases}}\)=> b-16 > 13 => b> 29 ( b thuộc Z )