Tìm chữ số tận cùng của :
a) 32013 b) 62013 c) 92013 d) 22013
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
a, Dễ thấy 31 có chữ số tận cùng là 1, nên theo tính chất 1 thì 31 2 có chữ số tận cùng là 1.
Vậy 31 2 có chữ số tận cùng là 1
b, Ta có: 9 = 4.2 + 1
Suy ra: 582 9 = 582 4 . 2 + 1 = 582 4 . 2 . 582 .
Do 582 có chữ số tận cùng là 2, theo tính chất 4 thì 582 4 . 2 sẽ có chữ số tận cùng là 6 nên 582 9 = 582 4 . 2 . 582 có chữ số tận cùng là 2.
Vậy 582 9 có chữ số tận cùng là 2
c, Ta có : 2018 = 4.504+2.
Suy ra : 2 2018 = 2 4 . 504 + 2 = 2 4 . 504 . 2 2 = 2 4 . 504 . 4
Theo tính chất 4 thì 2 4 . 504 có chữ số tận cùng là 6 nên 2 2018 = 2 4 . 504 . 4 có chữ số tận cùng là 4.
Vậy 2 2018 có chữ số tận cùng là 4
d, Ta có : 1999 = 4.499+3.
Suy ra : 7 1999 = 7 4 . 499 + 3 .
Theo tính chất 7 thì 7 1999 = 7 4 . 499 + 3 sẽ có chữ số tận cùng là 3
Vậy 7 1999 có chữ số tận cùng là 3
Ta có:
\(99^{99}=99^{98}\cdot99=\left(99^2\right)^{49}\cdot99\)
\(=\left(...01\right)^{49}\cdot99=\left(...01\right)\cdot99=\left(...99\right)\)
Vậy 2 chữ số tận cùng của \(99^{99}\) là 99
\(\Rightarrow\) Chọn A
a, vì \(1978\equiv8\)( mod 10 ) \(\Rightarrow1978^4\equiv6\) ( mod 10 )
mặt khác : \(1978^{4k}\equiv6\) ( mod 10 )
Vậy chữ số tận cùng của C là 6
b. vì \(C\equiv6\) ( mod 10 ) nên \(C^{20}\equiv76\)( mod 100 ) \(\Rightarrow C^{20m}\equiv76\)( mod 100 )
mặt khác : \(1986\equiv6\)( mod 20 ) \(\Rightarrow1986^8\equiv16\)( mod 20 )
do đó : \(1986^8=20k+16\); với k thuộc N
\(\Rightarrow C=1978^{20k+16}=1978^{16}.\left(1978^{20}\right)^k\equiv1978^{16}.76\) ( mod 100 )
lại có : \(1978\equiv-22\)( mod 100 ) \(\Rightarrow1978^4\equiv56\)( mod 100 )
\(\Rightarrow\left(1978^4\right)^4\equiv56^4\) ( mod 100 ) hay \(1978^{16}\equiv96\)( mod 100 )
từ đó ta có : \(C\equiv96.76\)( mod 100 ) \(\Rightarrow C\equiv76\)( mod 100 )
vậy C có hai chữ số tận cùng là 76
Cho A= 1944^2005
a) tìm dư khi chia A cho 7
b) tìm chữ số tận cùng của A
c) tìm 2 chữ số tận cùng của A
1) \(A=8x9x10x11x...85x86\)
Vì A có các chữ số 10;20;30;40;50;60;70;80 (8 chữ số 0)
\(\Rightarrow A\) có tận cùng là 8 chữ số 0
2) \(B=22x23x24x25x...216x217\)
B có các chữ số 30;40;50;...;210 gồm
\(\left(210-30\right):10+1=19\left(số.hạng\right)\)
\(\Rightarrow B\) có tận cùng là 19 chữ số 0
3) \(C=83x84x85x86x...313x314\)
C có các chữ số 90;100;110;...;310 gồm
\(\left(310-90\right):10+1=23\left(số.hạng\right)\)
\(\Rightarrow C\) có tận cùng là 23 chữ số 0
4) \(D=114x115x116x...387x388\)
D có các chữ số 120;130;140;...;380 gồm
\(\left(380-120\right):10+1=27\left(số.hạng\right)\)
\(\Rightarrow D\) có tận cùng là 27 chữ số 0