K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 1

\(a^2+b^2=7ab\Leftrightarrow a^2+b^2+2ab=9ab\)

\(\Leftrightarrow\left(a+b\right)^2=9ab\Leftrightarrow\dfrac{\left(a+b\right)^2}{9}=ab\)

\(\Leftrightarrow\left(\dfrac{a+b}{3}\right)^2=ab\)

Lấy logarit cơ số 2 hai vế:

\(log_2\left(\dfrac{a+b}{3}\right)^2=log\left(ab\right)\)

\(\Leftrightarrow2log_2\left(\dfrac{a+b}{3}\right)=log_2a+log_2b\)

29 tháng 1

https://hoc24.vn/cau-hoi/.8778209332689

giúp em ạ

AH
Akai Haruma
Giáo viên
25 tháng 5 2023

Lời giải:

Áp dụng BĐT Cauchy-Schwarz và AM-GM:

$M=\frac{b^2+c^2}{a^2}+a^2(\frac{1}{b^2}+\frac{1}{c^2})$

$\geq \frac{b^2+c^2}{a^2}+a^2.\frac{4}{b^2+c^2}$

$=(\frac{b^2+c^2}{a^2}+\frac{a^2}{b^2+c^2})+\frac{3a^2}{b^2+c^2}$

$\geq \sqrt{\frac{b^2+c^2}{a^2}.\frac{a^2}{b^2+c^2}}+\frac{3(b^2+c^2)}{b^2+c^2}$

$=2+3=5$

Vậy $M_{\min}=5$ 

11 tháng 5 2016

\(D=\frac{\log_2\left(2a^2\right)+\left(\log_2a\right)a^{\log_2\left(\log_2a+1\right)}+\frac{1}{2}\log^2_2a^4}{\log_2a^3\left(3\log_2a+1\right)+1}=\frac{1+2\log_2a+\log_2a\left(\log_2a+1\right)+8\log^2_2a}{3\log_2a.\left(3\log_2a+1\right)+1}\)

    \(=\frac{9\log^2_2a+3\log_2a+1}{9\log^2_2a+3\log_2a+1}=1\)

NV
30 tháng 8 2021

Ta chứng minh BĐT sau cho các số dương:

\(x^5+y^5\ge xy\left(x^3+y^3\right)\)

\(\Leftrightarrow x^5-x^4y+y^5-xy^4\ge0\)

\(\Leftrightarrow\left(x^4-y^4\right)\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)

Áp dụng:

\(\dfrac{a^5+b^5}{ab\left(a+b\right)}\ge\dfrac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\dfrac{a^3+b^3}{a+b}=a^2-ab+b^2\)

Tương tự và cộng lại:

\(VT\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)=2-\left(ab+ca+ca\right)\)

\(VT\ge4-\left(ab+bc+ca\right)-2=4\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\)

\(VT\ge4\left(ab+bc+ca\right)-\left(ab+bc+ca\right)-2=3\left(ab+bc+ca\right)-2\) (đpcm)

11 tháng 5 2022

BN THAM KHẢO:

undefined

 

7 tháng 11 2017

17 tháng 7 2018

14 tháng 6 2018

Đáp án A