Cho \(\widehat{xOy}=150^o\).Trên tia Õ lấy điểm A rồi kẻ tia Az nằm trong góc xOysao cho \(\widehat{OAz}=30^o\).Kẻ tia Az' là tia đối của tia Az .
a.Vì sao zz'//Oy?
b.Gọi OM,ON là các tia phân giác của \(\widehat{xOy}\)và \(\widehat{OAz'}\).CMR:AN//OM
Xl vì mình ko vẽ hình cho bạn đc
a) Kẻ Ox' là tia đối của Ox
Ta có: \(\widehat{x'Oy}\)+ \(\widehat{yOx}\)= 180*
Mà \(\widehat{yOx}\)= 150*
=> \(\widehat{x'Oy}\)= 180* -150 * = 30*
Ta lại có : \(\widehat{x'Oy}\)= \(\widehat{zAO}\)(30*) mà hai góc này lại là 2 góc so le trong
Suy ra Oy // Az mà Az' lại là tia đối của Az => Oy // zz'
b) Vì Oy // Az (hay zz') chứng minh trên
Suy ra \(\widehat{yOA}\)= \(\widehat{zAx}\)
Mà OM là pg của \(\widehat{yOA}\)và On là pg của \(\widehat{zAx}\)
=> \(\widehat{MOA}\)= \(\widehat{NAx}\)( 2 góc so le trong)
Từ đó ta biết đc OM // AN (Đpcm)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)