K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

2 tháng 1 2016

xy-2x+5y-12=0 => xy-2x+5y=12 => x(y-2)+5y=0 hoặc y(5+x)-2x=0

......

22 tháng 1 2019

viets pt ra:

x(y-2)+5(y-2)-2=0

(x+5)(y-2)=2=2*1=1*2=-1*-2=-2*-1

kẻ bảng rồi tính tiếp nha

22 tháng 1 2019

\(xy-2x+5y-12=0\)

\(\Leftrightarrow xy-2x+5y-10=2\)

\(\Leftrightarrow x\left(y-2\right)+5\left(y-2\right)=2\)

\(\Leftrightarrow\left(x+5\right)\left(y-2\right)=2\)

Sau đó lập bảng là ra

2 tháng 1 2016

Ta có : xy - 2x + 5y - 12 = 0 <=> y(x + 5) - 2(x+5) -2 = 0 <=> (y - 2)(x + 5) =  2

(bạn tự lập bảng rồi làm tiếp nha)

15 tháng 1 2016

1. xy + 5x + 5y = 92

=> (xy + 5x) + (5y + 25) = 92 + 25

=> x(y + 5) + 5(y + 5) = 117

=> (x + 5)(y + 5) = 117

=> x + 5 \(\in\)Ư(117) = {-1;1;-3;3;-9;9;-13;13;-39;39;-117;117}

Mà x >= 0 => x + 5 >= 5

=> x + 5 \(\in\){9;13;39;117}

Ta có bảng sau:

x + 591339117
x4834112
y + 513931
y84-2 (loại)-4 (loại)

Vậy; (x;y) \(\in\){(4;8);(8;4)}

15 tháng 1 2016

khó quá ak! Nhìn rối cả mắt.

DD
15 tháng 7 2021

a) \(xy+3x-2y-7=0\)

\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)

\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)

mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị: 

x-21-1
y+31-1
x3-1
y-2-4

Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).

b) \(5y-2x^2-2y^2+2=0\)

\(\Leftrightarrow16x^2+16y^2-40y-16=0\)

\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)

Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.

Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)

mà \(\left(4x\right)^2⋮16\)nên ta có: 

\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)