Cho A={1;2;...;1998}. Chia A thành 999 cặp rời nhau \(\left(a_i,b_i\right)\)sao cho I\(a_i-b_1\)I = 1 hoặc I \(a_i-b_i\)I = 6, \(i=\overline{1,999}\)
Chứng minh rằng: I \(a_1-b_1\)I + I \(a_2-b_2\)I + ... + I \(a_{999}-b_{999}\)I có chữ số tận cùng là 9.
nếu đã cho lai-bil=6 thì la1-b1l+...+la999-b999l có tận cùng là 4 chứ
Hướng giải như này: Giả sử có k cặp ai bi có giá trị tuyệt đối của hiệu bằng 6. Khi đó tổng đã cho bằng 6k+999-k=5k+999
Mình đang cần chứng minh k chẵn.