K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác MAOB có

\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

=>MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

b: Xét (O) có

\(\widehat{IBC}\) là góc tạo bởi tiếp tuyến BI và dây cung BC

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{IBC}=\widehat{BAC}\)

Xét ΔIBC và ΔIAB có

\(\widehat{IBC}=\widehat{IAB}\)

\(\widehat{BIC}\) chung

Do đó: ΔIBC~ΔIAB

=>\(\dfrac{IB}{IA}=\dfrac{IC}{IB}\)

=>\(IB^2=IA\cdot IC\)

c: Xét (O) có

\(\widehat{MBC}\) là góc tạo bởi tiếp tuyến BM và dây cung BC

\(\widehat{CDB}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{MBC}=\widehat{CDB}\)

Xét ΔMBC và ΔMDB có

\(\widehat{MBC}=\widehat{MDB}\)

\(\widehat{BMC}\) chung

Do đó: ΔMBC~ΔMDB

=>\(\dfrac{MB}{MD}=\dfrac{MC}{MB}\)

=>\(MB^2=MD\cdot MC\)

NV
21 tháng 1

a. Em tự giải

b.

Ta có: IB là tiếp tuyến (O) tại B nên \(\widehat{BAC}=\widehat{CBI}\) (góc nội tiếp và góc tạo bởi tiếp tuyến - dây cung cùng chắn BC)

Xét hai tam giác ABI và BCI có:

\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{CBI}\left(cmt\right)\\\widehat{BIA}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta ABI\sim\Delta BCI\left(g.g\right)\)

\(\Rightarrow\dfrac{IA}{IB}=\dfrac{IB}{IC}\Rightarrow IB^2=IC.IA\) 

c.

Ta có \(\widehat{BDC}\) và \(\widehat{MBC}\) là góc nội tiếp và góc tạo bởi tiếp tuyến sây cung cùng chắn BC

\(\Rightarrow\widehat{BDC}=\widehat{MBC}\)

Xét hai tam giác MBD và MCB có:

\(\left\{{}\begin{matrix}\widehat{BMD}\text{ chung}\\\widehat{BDC}=\widehat{MBC}\left(cmt\right)\end{matrix}\right.\) \(\Rightarrow\Delta MBD\sim\Delta MCB\left(g.g\right)\)

\(\Rightarrow\dfrac{MB}{MC}=\dfrac{MD}{MB}\Rightarrow MB^2=MC.MD\)

Đẳng thức cuối em ghi sai.

Do I là trung điểm MB \(\Rightarrow MB=2IB\Rightarrow MB^2=4IB^2\)

\(\Rightarrow MC.MD=4IC.IA\) (đây mới là đẳng thức đúng)

27 tháng 5 2018

giúp câu c

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp

Xét (O) có

ΔADC nội tiếp

AC là đường kính

Do đó: ΔADC vuông tại D

Xét ΔCAM vuông tại A có AD là đường cao

nên \(AM^2=MB^2=MD\cdot MC\)

b: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của BA

hay MO⊥AB

Xét ΔMAO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2=MC\cdot MD\)

a: Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2=R^2\)

30 tháng 1 2022

Từ một điểm M ở bên ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB với đường tròn (O)( A, B là các tiếp điểm). Gọi E là trung điểm của đoạn thẳng MA, tia EB cắt đường tròn (O) tại C. Tia MC cắt đường tròn (O) tại điểm thứ hai là D. Chứng minh rằng:

a. Tứ giác MAOB nội tiếp;

b. EA2 = EC.EB;

c. BD // MA.

24 tháng 5 2018

Bạn tự vẽ hình nha

a)Xét tứ giác MAOB có:

\(\widehat{MAO}\)=90'(vì MA là tiếp tuyến của (O))

\(\widehat{MBO}\)=90'(vì MB là tiếp tuyến của (O))

Suy ra \(\widehat{MAO}\)+\(\widehat{MBO}\)=90'+90'=180'

Vậy tứ giác MAOB nội tiếp

b)Xét tam giác ABM có:

MA=MB(tính chất hai tiếp tuyến cắt nhau)

Do đó tam giác MAB là tam giác cân tại M

c)Xét tam giác IBF và IAB có:

\(\widehat{BIA}\)là góc chung

\(\widehat{IBF}\)=\(\widehat{IAB}\)(cùng bằng 1/2 sđ\(\widebat{BF}\))

Do đó tam giác IBF đồng dạng với IAB

Suy ra \(\frac{IB}{IF}=\frac{IA}{IB}\)

<=>\(IB^2=IA.IF\)

23 tháng 5 2018

ai giúp mih với