K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 1

\(m^2x+6m=4x-12\)

\(\Leftrightarrow m^2x-4x=-6m-12\)

\(\Leftrightarrow\left(m^2-4\right)x=-6\left(m+2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-6\left(m+2\right)\)

- Nếu \(m=-2\Leftrightarrow m+2=0\) pt trở thành:

\(0.x=-6.0\Leftrightarrow0=0\) (luôn đúng)

Phương trình có vô số nghiệm

- Nếu \(m=2\Rightarrow m-2=0\) pt trở thành:

\(0.x=-6.4\Leftrightarrow0=-24\) (vô lý)

Phương trình vô nghiệm

- Nếu \(m\ne\pm2\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\) ta được:

\(\left(m-2\right)\left(m+2\right)x=-6\left(m+2\right)\)

\(\Leftrightarrow x=\dfrac{-6\left(m+2\right)}{\left(m-2\right)\left(m+2\right)}\)

\(\Leftrightarrow x=-\dfrac{6}{m-2}\)

Vậy:

Nếu \(m=2\) pt vô nghiệm

Nếu \(m=-2\) pt có vô số nghiệm

Nếu \(m\ne\pm2\) pt có nghiệm duy nhất: \(x=-\dfrac{6}{m-2}\)

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)

Để phương trình có vô số nghiệm thì m=3

16 tháng 4 2018

vào sách giải đi

17 tháng 4 2023

loading...  

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

3 tháng 6 2023

\(x^2-2x+m=0\)

\(\Delta=b^2-4ac=\left(-2\right)^2-4m=4-4m\)

Để pt có 2 nghiệm \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow4-4m>0\Leftrightarrow-4m>-4\Leftrightarrow m< 1\)

Theo Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

Ta có : \(2\left(x_1x_2\right)^2-x_1=6+x_2\) 

\(\Leftrightarrow2\left(x_1x_2\right)^2-x_1-x_2-6=0\)

\(\Leftrightarrow2\left(x_1x_2\right)^2-\left(x_1+x_2\right)-6=0\)

\(\Leftrightarrow2m^2-2-6=0\)

\(\Leftrightarrow2m^2=8\)

\(\Leftrightarrow m^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

Vậy \(m=-2\) thì thỏa mãn đê bài.

3 tháng 6 2023

Giải thích giúp em chỗ dấu tương tương thứ hai tại sao x1-x2 lại chuyển thành (x1+x2)  được không ạ

18 tháng 3 2022

A

18 tháng 3 2022

cho mình xin lời giải chi tiết nha

3 tháng 10 2023

\(x^2+6x+6m-m^2=0\left(1\right)\)

Áp dụng định lý Viet ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=-6\\P=x_1.x_2=6m-m^2\end{matrix}\right.\)

\(\Delta'=9-6m+m^2=\left(m-3\right)^2\ge0,\forall m\in R\)

\(\Rightarrow\sqrt[]{\Delta'}=\left|m-3\right|\)

Phương trình \(\left(1\right)\) có 2 nhiệm phân biệt

\(\left[{}\begin{matrix}x_1=-3+\left|m-3\right|\\x_2=-3-\left|m-3\right|\end{matrix}\right.\)

\(\Rightarrow x_1-x_2=2\left|m-3\right|\)

Theo đề bài ta có :

\(x^3_1-x^3_2+2x^2_1+12x_1+72=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x^2_1+x^2_2+x_1.x_2\right)+2x^2_1+12x_1+72=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1.x_2\right]+2x^2_1+12x_1+72=0\)

\(\Leftrightarrow2\left|m-3\right|\left(36-6m+m^2\right)+2\left[-3+\left|m-3\right|\right]^2+12\left[-3+\left|m-3\right|\right]+72=0\)

\(\Leftrightarrow2\left|m-3\right|\left(9-6m+m^2+27\right)+2\left[-3+\left|m-3\right|\right]^2+12\left[-3+\left|m-3\right|\right]+72=0\)

\(\Leftrightarrow2\left|m-3\right|\left[\left(m-3\right)^2+27\right]+2\left[-3+\left|m-3\right|\right]^2+12\left[-3+\left|m-3\right|\right]+72=0\left(a\right)\)

- Với \(m>3\)

\(\left(a\right)\Leftrightarrow2\left(m-3\right)\left[\left(m-3\right)^2+27\right]+2\left[-3+m-3\right]^2+12\left[-3+m-3\right]+72=0\)

\(\Leftrightarrow2\left(m-3\right)\left[\left(m-3\right)^2+27\right]+2\left(m-6\right)^2+12\left(m-6\right)+72=0\)

Đặt \(t=m-3>0\)

\(pt\Leftrightarrow2t\left(t^2+27\right)+2\left(t-3\right)^2+12\left(t-3\right)+72=0\)

\(\Leftrightarrow2t^3+54t+2t^2-12t+18+12t-36+72=0\)

\(\Leftrightarrow2t^3+2t^2+54t+54=0\)

\(\Leftrightarrow2t^2\left(t+1\right)+54\left(t+1\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(2t^2+54\right)=0\)

\(\Leftrightarrow t+1=0\left(2t^2+54>0,\forall t\in R\right)\)

\(\Leftrightarrow t=-1\left(ktm\right)\)

- Với \(m< 3\)

\(\left(a\right)\Leftrightarrow2\left(3-m\right)\left[\left(3-m\right)^2+27\right]+2\left[-3-m+3\right]^2+12\left[-3-m+3\right]+72=0\)

\(\Leftrightarrow2\left(3-m\right)\left[\left(3-m\right)^2+27\right]+2m^2-12m+72=0\)

\(\Leftrightarrow2\left(3-m\right)\left[\left(3-m\right)^2+27\right]-2m\left(6-m\right)+72=0\)

Đặt \(t=3-m< 0\)

\(pt\Leftrightarrow2t\left(t^2+27\right)-2\left(3-t\right)\left(3+t\right)+72=0\)

\(\Leftrightarrow2t^3+54t-18+2t^2+72=0\)

\(\Leftrightarrow2t^3+2t^2+54t+54=0\)

\(\Leftrightarrow2t^2\left(t+1\right)+54\left(t+1\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(2t^2+54\right)=0\)

\(\Leftrightarrow t+1=0\left(2t^2+54>0,\forall t\in R\right)\)

\(\Leftrightarrow t=-1\)

\(\Leftrightarrow3-m=-1\)

\(\Leftrightarrow m=4\left(ktm\right)\)

- Với \(m=3\)

\(\left(a\right)\Leftrightarrow0+2.9-36+72=54=0\left(vô.lý\right)\)

\(\Rightarrow m=3\left(loại\right)\)

Vậy không có m nào để thỏa yêu cầu đề bài.

3 tháng 10 2023

Cảm ơn cậu nhiều .

NV
13 tháng 12 2020

1.

\(2x+1\ge0\Rightarrow x\ge-\dfrac{1}{2}\)

Khi đó pt đã cho tương đương:

\(x^2+2x+2m=\left(2x+1\right)^2\)

\(\Leftrightarrow x^2+2x+2m=4x^2+4x+1\)

\(\Leftrightarrow3x^2+2x+1=2m\)

Xét hàm \(f\left(x\right)=3x^2+2x+1\) trên \([-\dfrac{1}{2};+\infty)\)

\(-\dfrac{b}{2a}=-\dfrac{1}{3}< -\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\) ; \(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}\)

\(\Rightarrow\) Pt đã cho có 2 nghiệm pb khi và chỉ khi \(\dfrac{2}{3}< 2m\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{3}< m\le\dfrac{3}{8}\)

\(\Rightarrow P=\dfrac{1}{8}\)

NV
13 tháng 12 2020

3.

Đặt \(x^2=t\ge0\Rightarrow\left[{}\begin{matrix}x=\sqrt{t}\\x=-\sqrt{t}\end{matrix}\right.\)

Pt trở thành: \(t^2-3mt+m^2+1=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9m^2-4\left(m^2+1\right)>0\\t_1+t_2=3m>0\\t_1t_2=m^2+1>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{2}{\sqrt{5}}\)

Ta có:

\(M=x_1+x_2+x_3+x_4+x_1x_2x_3x_4\)

\(=-\sqrt{t_1}-\sqrt{t_2}+\sqrt{t_1}+\sqrt{t_2}+\left(-\sqrt{t_1}\right)\left(-\sqrt{t_2}\right)\sqrt{t_1}.\sqrt{t_2}\)

\(=t_1t_2=m^2+1\) với \(m>\dfrac{2}{\sqrt{5}}\)

29 tháng 11 2016

Giả sử điểm M(a,b)  là điểm mà đường thẳng d luôn đi qua ta có

\(b=2a\left(m-1\right)-m+1\)

\(\Leftrightarrow m\left(2a-1\right)+1-2a-b=0\)

\(\Leftrightarrow\hept{\begin{cases}2a-1=0\\1-2a-b=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=0,5\\b=0\end{cases}}}\)

Vậy đường thẳng luôn đi qua điểm cố định M(0,5; 0)

17 tháng 1 2019

Cho x, y là các số dương thỏa mãn: xy + \(\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2008}\). Tính giá trị của biểu thức S=\(x\sqrt{1+y^2}=y\sqrt{1+x^2}\)