K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔAKD có

AB=AK

\(\widehat{BAD}=\widehat{KAD}\)

AD chung

Do đó: ΔABD=ΔAKD

=>\(\widehat{ABD}=\widehat{AKD}\)

=>\(\widehat{ABC}=\widehat{AKD}\)

mà \(\widehat{AKD}+\widehat{DKC}=180^0\)(hai góc kề bù)

nên \(\widehat{ABC}+\widehat{DKC}=180^0\left(1\right)\)

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AEC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AEC}=\widehat{DEC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{DEC}+\widehat{DKC}=180^0\)

=>DKCE là tứ giác nội tiếp

b: Xét ΔAKD và ΔAEC có

\(\widehat{AKD}=\widehat{AEC}\left(=\widehat{ABC}\right)\)

\(\widehat{KAD}\) chung

Do đó: ΔAKD~ΔAEC

=>\(\dfrac{AK}{AE}=\dfrac{AD}{AC}\)

=>\(AK\cdot AC=AD\cdot AE\)

a: góc BHD+góc BMD=180 độ

=>BHDM nội tiếp

b: BHDM nội tiếp

=>góc HDM+góc HBM=180 độ

=>góc ADM=góc ABC

=>góc ADM=góc ADC

=>DA là phân giáccủa góc MDC

c: Xét tứ giác DHNC có

góc DHC=góc DNC=90 độ

=>DHNC nội tiếp

=>góc NHD=góc NDC

góc NHD+góc MHD

=180 độ-góc NCD+góc MBD

=180  độ+180 độ-góc ABD-góc ACD

=180 độ

=>M,H,N thẳng hàng

Bổ sung: ΔABC cân tại A

ΔABC cân tại A

=>AO đi qua trug diểm I của EF

Vẽ IK vuông góc AB tại K, gọi H và G lần lượt là giao của OA với BC và(O)

Vì OE vuông góc AB, IK vuông goc AB, GB vuông góc AB

=>OE//IK//GB

ΔABG có IK//GB

nên IK/BG=AI/AG

=>IK=AI*BG/AG

ΔABH có EI//BH

ΔABE có OE//BG

=>IH/AH=BE/BA=OG/AG và AE/AB=AI/AH

=>IH=AH*OE/AE

ΔABG có OE//BG

nên AB/AE=BG/OE

AH/AI=AB/AE=BG/OE

=>AH*OE=AI*BG 

=>AH*OG=AI*BG

=>IK=IH

=>ĐPCM

25 tháng 3 2023

có pải bài trên ko ạ

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

17 tháng 5 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng định lí Pitago vào tam giác vuông ABC ta có :

B C 2 = A B 2 + A C 2 = 3 2 + 4 2  = 25

Suy ra : BC = 5 (cm)

Theo tính chất hai tiếp tuyến giao nhau ta có:

AD = AE

BD = BF

CE = CF

Mà: AD = AB – BD

AE = AC – CF

Suy ra: AD + AE = AB – BD + (AC – CF)

= AB + AC – (BD + CF)

= AB + AC – (BF + CF)

= AB + AC – BC

Suy ra:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

2 tháng 12 2016

Ta có: AC = 5 
Gọi bán kính đường tròn nội tiếp là r 
Ta có:
S(ABC) =S(OAB) + S(OAC) +S(OBC) (1) 
S(OAB) = r*AB/2 
S(OAC) = r*AC/2 
S(OBC) = r*BC/2 
=> S(OAB) + S(OAC) +S(OBC) = r* (AB+BC+CA)/2 = 6r (2) 
Mặt khác; S(ABC) = AB.AC/2 = 6 (3) 

Từ (1), (2), (3) :
=> 6r = 6 => r = 1.

Ủng hộ mk nha!

4 tháng 1 2019

cảm ơn bạn nhiều

a: góc BEH+góc BFH=90 độ

=>BEHF nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

Xét ΔABK vuông tại B và ΔAFC vuông tại F có

góc AKB=góc ACF

=>ΔABK đồng dạng với ΔAFC