Chứng minh rằng :
\(\frac{1}{1x2}\) + \(\frac{1}{3x4}\) + .... + \(\frac{1}{49x50}\)= \(\frac{1}{26}\)+ \(\frac{1}{27}\)+....+ \(\frac{1}{50}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1x2+1/2x3+...+1/49x50
=1-1/2+1/2-1/3+.....+1/49-1/50
=1-1/50(1)
Ta co 1(2)
So sanh (1) voi (2) ta thay 1-1/50<1
=>1/1x2+...+1/49x50<1
(Phuong phap khu)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
=\(\frac{1}{1}-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}<1\)
Vậy \(\frac{49}{50}<1\)
Ta có:
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\left(đpcm\right)\)
Ta có: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\) (đpcm)
*đpcm = điều phải chứng minh
Ta có :
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
=> đpcm
Ủng hộ mk nha !!! ^_^
\(\text{Ta có :}\)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Ta có: \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)
\(-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
Ta biến đổi vế phải :
1-1/2+1/3-1/4+.....+1/49-1/50
=(1+1/3+1/5+....+1/49)-(1/2+1/4+1/6+.......+1/50)
=(1+1/2+1/3+.....+1/49+1/50)-2(1/2+1/4+1/6+......+1/50)
=(1+1/2+...+1/50)-(1+1/2+1/3+....+1/25)
=1/26+1/27+.......+1/50
Vậy 1/26+1/27+1/28+.....+1/50=1-1/2+1/3-1/4+......+1/49-1/50
Mình không bấm phân số được mong mấy bạn thông cảm
\(\frac{1}{1x2}+\frac{1}{3x4}+....+\frac{1}{49x50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)+\left(-\frac{1}{2}-\frac{1}{4}-.....-\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}......+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+......+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\left(đpcm\right)\)