Tìm x:
(x-1)(x-2)>0
\(\frac{5}{x}< 1\)
Đó nha, các bạn làm hộ mình cái
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)(x-4).(2x+6)=0
=>(x-4)=0 hoặc (2x+6)=0
với x-4 = 0
x =0+4
x =4
với 2x+6=0
2x =0-6
2x =-6
x =-6:2
x =-3
a) \(\frac{-13}{2x+1}< 0\)
\(=>2x+1>0\)
\(=>2x>-1\)
\(=>x=\frac{1}{2}\)
b) \(\frac{x-1}{x+3}>0\)
\(=>x-1>0=>x>1\)
c) \(\frac{2x+2}{x-4}< 0\)
\(=>2x+2< 0=>x< -1\)
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Leftrightarrow-1< x< 2\) (đúng)
Hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\) (vô lý)
=> \(-1< x< 2\)
b) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
Bất đẳng thức xảy ra khi 2 thừa số đồng dấu .
\(\left(1\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)
\(\left(2\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)
Vậy \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\) thì thõa mãn
a) Để (x+1)(x-2)<0 khi x+1 và x-2 trái dấu
Mà x+1 > x-2 nên \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}}\)
=> -1 < x < 2
Vậy -1 < x < 2
b) Đề \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) khi x+2 và \(\frac{2}{3}\) cùng dấu
Với x+2 và \(x+\frac{2}{3}\) cùng dương : \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)
Với x+2 và \(x+\frac{2}{3}\) cùng âm : \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)
Vậy x>2 hoặc x < \(\frac{2}{3}\)
\(a,x-\frac{5}{6}:1\frac{1}{6}=0,125\)
\(x-\frac{5}{6}:\frac{7}{6}=\frac{1}{8}\)
\(x-\frac{5}{7}=\frac{1}{8}\)
\(x=\frac{1}{8}+\frac{5}{7}\) \(x=\frac{47}{56}\)
\(b,\left(1-\frac{2}{10}+x+\frac{1}{5}\right):\left(1\frac{1}{3}-\frac{2}{3}+3\frac{1}{3}\right)-1=1\frac{1}{2}\)
\(\left(1-\frac{1}{5}+x+\frac{1}{5}\right):\left(\frac{4}{3}-\frac{2}{3}+\frac{10}{3}\right)-1=\frac{3}{2}\)
\(\left(\frac{4}{5}+x+\frac{1}{5}\right):4=\frac{3}{2}+1\)
\(\left(1+x\right):4=\frac{5}{2}\)
\(1+x=\frac{5}{2}.4\)
\(1+x=10\)
\(x=10-1\)
\(x=9\)
Ta có: \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}\)
\(=\frac{6}{\left(x+y\right)^2}=6\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
Bài làm:
Ta có: \(x+y\ge2\sqrt{xy}\)(bất đẳng thức Cauchy)
\(\Leftrightarrow\sqrt{xy}\le\frac{x+y}{2}\)
\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Áp dụng bất đẳng thức Cauchy Schwars ta được:
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+\frac{1}{2.\frac{1}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{1}{2}}\)
\(=\frac{4}{1^2}+2=6\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
( x - 1 )( x - 2 ) > 0
=> x > 2
Ta chỉ có 5/3 ; 5/4 ; 5/5 là lớn hơn 1
Gọi tập hợp các số tự nhiên x thỏa mãn là S .
S = { x > 5 / x \(\in N\)}
\(\orbr{\begin{cases}x>2\\x< 1\end{cases}}\)
0<x<5