Tập hợp A của các số tự nhiên mà :
a) 1 \(\in\)A
b) Nếu n \(\in\)A thì 2n + 1 \(\in\)A
c) Nếu 3n + 1 \(\in\)A thì n \(\in\)A
Vậy 8 \(\in\)A hay 8 \(\notin\)A ?
Làm ơn các bạn đó , giúp mình đi , làm ơn !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đúng vì 1 số nguyên cũng là số thực
b) Đúng vì 1 số hữu tỉ cũng là số thực
c) Sai vì 1 số thực có thể không là số nguyên. Chẳng hạn, số \(0,2 \in R\) nhưng \(0,2 \notin Z\)
d) Sai vì 1 số thực có thể là số hữu tỉ hoặc không là số hữu tỉ. Chẳng hạn \(0,2 \in R\) và \(0,2 \in Q\)
1. \(x\in\left\{0\right\}\)
2. Gọi x là số cần tìm => x = n - 1
b: Gọi d=UCLN(2n+1;3n+1)
\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(75n+6;8n+7)
\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)
\(\Leftrightarrow d=13\)
=>UC(5n+6;8n+7)={1;-1;13;-13}
a) Nếu \(a \in \mathbb{N}\) thì \(a \in \mathbb{Q}\) => Đúng
b) Nếu \(a \in \mathbb{Z}\) thì \(a \in \mathbb{Q}\) => Đúng
c) Nếu \(a \in \mathbb{Q}\) thì \(a \in \mathbb{N}\) => Sai. Vì a là số hữu tỉ thì chưa chắc a là số tự nhiên.
d) Nếu \(a \in \mathbb{Q}\) thì \(a \in \mathbb{Z}\) => Sai. Vì a là số hữu tỉ thì chưa chắc a là số nguyên.
e) Nếu \(a \in \mathbb{N}\) thì \(a \notin \mathbb{Q}\) => Sai. Vì các số tự nhiên là các số hữu tỉ
g) Nếu \(a \in \mathbb{Z}\) thì \(a \notin \mathbb{Q}\) => Sai. Vì các số nguyên là các số hữu tỉ
1.A có 8 phần tử đó là các phần tử 0;1;2;3;4;5;6;7, 3 số \(\notin\)A là -1;-2;-3
a,18 chia hết cho n
=>n\(\in\)Ư(18)={-18,-9,-6,-3,-2,-1,1,2,3,6,9,18}
để A là số nguyên tố thì phải đảm bảo A thuộc N
để A thuộc N
=> 2n + 8 chia hết cho n + 1
=> 2.(n + 1) + 6 chia hết cho n+ 1
=> 6 chia hết cho n +1
=> n+ 1 \(\in\) Ư(6 ) = {1;2;3;6}
=> n+1 =1 => n = 0
n+1 = 2 => n = 1 (snt)
n+1 =3 => n = 2 (sgt)
n + 1 = 6 => n = 5 (snt)
=> n = {1;2;5}
\(A=\left\{1;2;3;4...\right\}\)vẫn có 1 là 1 thuộc A
.............khó hiểu quá
Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B