K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

\(A=\left\{1;2;3;4...\right\}\)vẫn có 1 là 1 thuộc A

.............khó hiểu quá

21 tháng 8 2017

Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) Đúng vì 1 số nguyên cũng là số thực

b) Đúng vì 1 số hữu tỉ cũng là số thực

c) Sai vì 1 số thực có thể không là số nguyên. Chẳng hạn, số \(0,2 \in R\) nhưng \(0,2 \notin Z\)

d) Sai vì 1 số thực có thể là số hữu tỉ hoặc không là số hữu tỉ. Chẳng hạn \(0,2 \in R\) và \(0,2 \in Q\)

a: Đúng

b: Đúng

c: Sai

d: Sai

14 tháng 8 2017

1. A = { 0 }

2. có n + 1 số tự nhiên ko vượt quá n.

25 tháng 8 2016

1. \(x\in\left\{0\right\}\)

2. Gọi x là số cần tìm => x = n - 1 

25 tháng 8 2016

1. Có x={0}

2. n+1

b: Gọi d=UCLN(2n+1;3n+1)

\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>UC(2n+1;3n+1)={1;-1}

c: Gọi d=UCLN(75n+6;8n+7)

\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)

\(\Leftrightarrow d=13\)

=>UC(5n+6;8n+7)={1;-1;13;-13}

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) Nếu \(a \in \mathbb{N}\) thì \(a \in \mathbb{Q}\) => Đúng

b) Nếu \(a \in \mathbb{Z}\) thì \(a \in \mathbb{Q}\) => Đúng

c) Nếu \(a \in \mathbb{Q}\) thì \(a \in \mathbb{N}\) => Sai. Vì a là số hữu tỉ thì chưa chắc a là số tự nhiên.

d) Nếu \(a \in \mathbb{Q}\) thì \(a \in \mathbb{Z}\) => Sai. Vì a là số hữu tỉ thì chưa chắc a là số nguyên.

e) Nếu \(a \in \mathbb{N}\) thì \(a \notin \mathbb{Q}\) => Sai. Vì các số tự nhiên là các số hữu tỉ

g) Nếu \(a \in \mathbb{Z}\) thì \(a \notin \mathbb{Q}\) => Sai. Vì các số nguyên là các số hữu tỉ

9 tháng 7 2017

1.A có 8 phần tử đó là các phần tử 0;1;2;3;4;5;6;7, 3 số \(\notin\)A là -1;-2;-3

7 tháng 2 2016

a,18 chia hết cho n

=>n\(\in\)Ư(18)={-18,-9,-6,-3,-2,-1,1,2,3,6,9,18}

7 tháng 2 2016

bai toan nay ?

12 tháng 7 2016

để A là số nguyên tố thì phải đảm bảo A thuộc N

để A thuộc N

=> 2n + 8  chia hết cho n + 1

=> 2.(n + 1) + 6 chia hết cho  n+ 1

=> 6  chia hết cho n +1

=> n+ 1 \(\in\) Ư(6 ) = {1;2;3;6}

=> n+1 =1   =>  n = 0

      n+1 = 2   => n = 1 (snt)

      n+1 =3  =>  n = 2 (sgt)

      n + 1 = 6 => n = 5  (snt)

=> n = {1;2;5}