F = ( 1 + 1/2 ) . ( 1 + 1/3) . ( 1 + 1/4) ... ( 1 + 1/2009) . ( 1 + 1/2010)
Giups mình vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2009}{1}+\frac{2010}{2}+...+\frac{5016}{2008-2008}\)
\(=\frac{2009}{1}+\frac{2010}{2}+...+\frac{5016}{0}\)
Sau đó QĐM(bạn tự QĐ nha)
\(=\frac{0}{0}+\frac{0}{0}+...+\frac{5016}{0}\)
\(=\frac{5016}{0}=0\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right).x=0\)
Mà \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\ne0\)
\(\Rightarrow x=0\)
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2009}-\frac{1}{2010}\)
\(\Rightarrow A=1-\frac{1}{2010}=\frac{2010}{2010}-\frac{1}{2010}=\frac{2009}{2010}\)
Vậy \(A=\frac{2009}{2010}\)
1/1*2+1/2*3+........+1/2009*2010
=1-1/2+1/2-1/3+..........+1/2009-1/2010
=1-1/2010
=2009/2010
\(\frac{1}{1}:2+\frac{1}{2}:3+\frac{1}{3}:4+...+\frac{1}{2009}:2010+\frac{1}{2010}:2011\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}+\frac{1}{2010.2011}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}+\frac{1}{2010}-\frac{1}{2011}\)
\(=1-\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{2009}-\frac{1}{2009}\right)+\left(\frac{1}{2010}-\frac{1}{2010}\right)-\frac{1}{2011}\)
\(=1-\frac{1}{2011}=\frac{2010}{2011}\)
~ Hok tốt ~
\(\frac{1}{1}:2+\frac{1}{2}:3+\frac{1}{3}:4+...+\frac{1}{2009}:2010+\frac{1}{2010}:2011\)
\(=\frac{1}{1}:\frac{2}{1}+\frac{1}{2}:\frac{3}{1}+\frac{1}{3}:\frac{4}{1}+...+\frac{1}{2009}:\frac{2010}{1}+\frac{1}{2010}:\frac{2011}{1}\)
\(=\frac{1}{1}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+...+\frac{1}{2009}\cdot\frac{1}{2010}+\frac{1}{2010}\cdot\frac{1}{2011}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2010}+\frac{1}{2010\cdot2011}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}=\frac{2010}{2011}\)
Dấu " . " là dấu nhân nhé
a = 1/2 nhân 2 + 1/3 nhân 3 + 1/4 nhân 4 + .....+ 1/2009 nhân 2009 + 1/2010 nhân 2010
so sánh a với 1
a=1/2.2+1/3.3+1/4.4+...+1/2009.2009+1/2010.2010(có 2009 số hạng)
a=1+1+1+...+1+1(2009 số 1)
a=1.2009=2009
Vậy a>1
Lời giải:
\(F=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{2010}{2009}.\frac{2011}{2010}\\ =\frac{3.4.5...2010.2011}{2.3.4...2009.2010}=\frac{2011}{2}\)