Cho hình bình hành ABCD. Trên đường chéo AC lấy điểm E sao cho AC= 3AE. Qua E vẽ đường thẳng song song với CD, cắt AD và BC theo thứ tự ở M và N. a) Tìm các tam giác đồng dạng với tam giác ADC và tìm tỉ số đồng dạng. b) Điểm E ở vị trí nào trên AC thì E là trung điểm của MN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, sửa tìm các tam giác đồng dạng nhé
Xét tam giác AME và tam giác ADC ta có : ME // DC
\(\frac{AM}{MD}=\frac{AE}{CE}\)( theo định lí Ta lét )
^A chung
Vậy tam giác AME ~ tam giác ADC ( c.c.c )
\(\Rightarrow\frac{ME}{DC}=\frac{AE}{AC}\)( tỉ số đồng dạng )
b, Xét tam giác ADC ta có : ME // DC
\(\Rightarrow\frac{AM}{AD}=\frac{AE}{AC}=\frac{ME}{DC}\)( theo hệ quả Ta lét )
Xét tam giác ACB ta có : EN // AB
\(\Rightarrow\frac{CE}{AC}=\frac{CN}{BC}=\frac{EN}{AB}\)( theo hệ quả Ta lét )
giả sử : E là trung điểm MN khi \(\frac{ME}{DC}=\frac{NE}{AB}\)
mà \(DC=AB\)( do ABCD là hình bình hành )
Suy ra : \(ME=NE\)hay E là trung điểm MN
Vì ABCD là hình bình hành nên ME // DE và EN // AB.
+ ME // DC nên ΔAME ~ ΔADC, tỉ số đồng dạng A E A C = 1 3
+ Vì ABCD là hình bình hành nên góc B = D; AD = BC; AB = DC
=> ΔCBA ~ ΔADC
ΔCBA ~ ΔADC, tỉ số đồng dạng bằng 1
+ EN // AB nên ΔCNE ~ ΔADC, do đó ΔCNE ~ ΔADC, tỉ số đồng dạng C E A C = 2 3
Vậy cả (I), (II), (III) đều đúng.
Đáp án: C
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
a: Xét ΔAME và ΔADC có
\(\widehat{AME}=\widehat{ADC}\)(hai góc đồng vị, ME//DC)
\(\widehat{MAE}\) chung
Do đó: ΔAME đồng dạng với ΔADC
=>\(\dfrac{AM}{AD}=\dfrac{ME}{DC}=\dfrac{AE}{AC}=\dfrac{1}{3}\)
Xét ΔCEN và ΔACD có
\(\widehat{CEN}=\widehat{ACD}\)(hai góc so le trong, EN//CD)
\(\widehat{ECN}=\widehat{CAD}\)(hai góc so le trong, CN//AD)
Do đó: ΔCEN đồng dạng với ΔACD
=>\(\dfrac{CE}{AC}=\dfrac{EN}{CD}=\dfrac{CN}{AD}=\dfrac{2}{3}\)
b: E là trung điểm của MN
=>EM=EN
Xét ΔEAM và ΔECN có
\(\widehat{EAM}=\widehat{ECN}\)(hai góc so le trong, AM//CN)
\(\widehat{AEM}=\widehat{CEN}\)(hai góc đối đỉnh)
Do đó: ΔEAM đồng dạng với ΔECN
=>\(\dfrac{EA}{EC}=\dfrac{EM}{EN}=1\)
=>E là trung điểm của AC