Cho hình thang vuông ABCD có AB= 1/2 CD và góc A= góc D bằng 90 độ Gọi H là hình chiếu của D trên AC, P và Q lần lượt là trung điểm của DH và HC
1) CMR ABQP là hình bình hành
2) Gọi O là trung điểm của CP, HO cắt CO tại M Chứng minh CM= 2/3 AB
2) CM PQ^2+DQ^2=BD^2
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
a) xét tg DHC có: P là t/đ của DH (gt) và Q là t/đ của HC(gt) => PQ là đg trung bình của tg DHC
=> PQ//DC và PQ=1/2.DC
Mà AB//DC và AB=1/2.DC(gt) nên AB=PQ và AB//PQ => tg ABQP là hbh
b) Gọi G là gđ của HO là PQ
Xét tg HPC có: PQ là đg trung tuyến ứng cạn HC (vì Q là t/đ của HC )
và HO là đg trung tuyến ứng canh PC (vì O là t/đ của PC)
=> G là trọng tâm của tg HPC => PG =2/3. PG. Mà PQ =AB (vì tg ABQP la fhbh) nen PG =2/3.AB (1)
Ta c/m đc tg PGO =tg CMO (g.c.g) => PG=CM (2)
Từ (1),(2)=> CM=2/3.AB (đpcm)
c) Xét tb ADQ có: DH là đg cao ứng cạnh AQ và QP là đg cao ứng cạnh AD (vì PQ//AB ; mà AB vg vs AD)
=> P là trực tâm của tg AQD => AP vg vs DQ . mà AP// BQ (vì tg ABQP là hbh ) => BQ vg vs DQ => tg BDQ vg tại Q
=> BQ^2 + DQ^2 = BD^2 (ĐL py-ta-go) (đpcm)