K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2019

Giả sử có ít nhất một số là số vô tỉ, giả sử đó là \(\sqrt{a}\)

Ta có: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hữu tỉ

=> Đặt \(\sqrt{a}+\sqrt{b}+\sqrt{c}=\frac{p}{q}\)với p, q thuộc Z và (p, q)=1

=> \(\sqrt{b}+\sqrt{c}=\frac{p}{q}-\sqrt{a}\)

=> \(b+2\sqrt{bc}+c=\frac{p^2}{q^2}-2\frac{p}{q}\sqrt{a}+a\Leftrightarrow2\sqrt{bc}+\frac{2p}{q}\sqrt{a}=\frac{p^2}{q^2}+a-b-c\)

=> \(2\sqrt{bc}+\frac{2p}{q}\sqrt{a}\)là số hữu tỉ

=> \(\sqrt{bc}+\frac{p}{q}\sqrt{a}\)là số hữu tỉ

=> Đặt \(\sqrt{bc}+\frac{p}{q}\sqrt{a}\)=\(\frac{m}{n}\)với m,n thuộc Z, (m, n)=1

=> \(\sqrt{bc}=\frac{m}{n}-\frac{p}{q}\sqrt{a}\Rightarrow bc=\frac{m^2}{n^2}-\frac{2mp}{nq}\sqrt{a}+\frac{p^2}{q^2}.a\)

=> \(\frac{2mp}{nq}\sqrt{a}=\frac{m^2}{n^2}+\frac{p^2.a}{q^2}-bc\)

=>\(\frac{2mp}{nq}\sqrt{a}\)là số hữu tỉ 

=> \(\sqrt{a}\)là số hữu tỉ  vô lí với điều giả sử

=> Không có số nào là số vô tỉ hay cả ba số là số hữu tỉ

24 tháng 3 2019

Không biết cách này có đúng không ạ?Em làm thử

                                       Lời giải

Từ đề bài suy ra a,b,c>0.

Ta chứng minh: Nếu a;b;c và \(\sqrt{a};\sqrt{b};\sqrt{c}\) là số hữu tỉ.Suy ra \(a=\frac{m^2}{n^2};b=\frac{p^2}{q^2};c=\frac{t^2}{f^2}\) (là bình phương của 1 số hữu tỉ).Thật vậy,giả sử: \(a=\frac{m}{n};b=\frac{p}{q};c=\frac{t}{f}\) (không là bình phương của một số hữu tỉ)

Thế thì: \(\sqrt{a}=\sqrt{\frac{m}{n}};\sqrt{b}=\sqrt{\frac{p}{q}};\sqrt{c}=\sqrt{\frac{t}{f}}\).Suy ra

\(\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{\frac{m}{n}}+\sqrt{\frac{p}{q}}+\sqrt{\frac{t}{f}}\) là số vô tỉ,trái với giả thiết.

Do đó \(a=\frac{m^2}{n^2};b=\frac{p^2}{q^2};c=\frac{t^2}{f^2}\) suy ra \(\sqrt{a}=\frac{m}{n};\sqrt{b}=\frac{p}{q};\sqrt{c}=\frac{t}{f}\) là các số hữu tỉ (đpcm)

3 tháng 5 2016

vi a,b,c deu viet dc duoi dang phan so: a/m ;b/m c/m

\(\sqrt{a}\sqrt{b}\sqrt{c}\)cung dc viet  duoi dang phan so:\(\sqrt{\frac{a}{m}}\sqrt{\frac{b}{m}}\sqrt{\frac{c}{m}}\)

16 tháng 5 2016

a,b,c đều viết được dưới dạng phân số:

\(\frac{a}{x}+\frac{b}{x}+\frac{c}{x}\)=>...

16 tháng 5 2016

mik làm ở trên rồi

nha: 0 11

5 tháng 7 2023

a + b, b + c, c + a đều là các số hữu tỉ

=> 2(a + b + c) là số hữu tỉ

=> a + b + c là số hữu tỉ (do khi 1 số hữu tỉ chia cho 2 sẽ nhận đc 1 số hữu tỉ)

=> a + b + c - (a + b) = c là số hữu tỉ; a + b + c - (b + c) = a là số hữu tỉ; a + b + c - (c + a) = b là số hữu tỉ

=> a, b, c đều là số hữu tỉ (đpcm)

24 tháng 6 2021

Cả 3 đều đúng

24 tháng 6 2021

cả 3 nha

24 tháng 1 2019

Câu hỏi của ka ding - Toán lớp 9 - Học toán với OnlineMath Em xem lbaif ở link này nhé!