Chứng minh rằng nếu a,b,c và √a+√b+√c là các số hữu tỉ thì √a,√b,√c cũng là các số hữa tỉ
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
3 tháng 5 2016
vi a,b,c deu viet dc duoi dang phan so: a/m ;b/m c/m
\(\sqrt{a}\sqrt{b}\sqrt{c}\)cung dc viet duoi dang phan so:\(\sqrt{\frac{a}{m}}\sqrt{\frac{b}{m}}\sqrt{\frac{c}{m}}\)
16 tháng 5 2016
a,b,c đều viết được dưới dạng phân số:
\(\frac{a}{x}+\frac{b}{x}+\frac{c}{x}\)=>...
O
5 tháng 7 2023
a + b, b + c, c + a đều là các số hữu tỉ
=> 2(a + b + c) là số hữu tỉ
=> a + b + c là số hữu tỉ (do khi 1 số hữu tỉ chia cho 2 sẽ nhận đc 1 số hữu tỉ)
=> a + b + c - (a + b) = c là số hữu tỉ; a + b + c - (b + c) = a là số hữu tỉ; a + b + c - (c + a) = b là số hữu tỉ
=> a, b, c đều là số hữu tỉ (đpcm)
ND
1
24 tháng 1 2019
Câu hỏi của ka ding - Toán lớp 9 - Học toán với OnlineMath Em xem lbaif ở link này nhé!
Giả sử có ít nhất một số là số vô tỉ, giả sử đó là \(\sqrt{a}\)
Ta có: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hữu tỉ
=> Đặt \(\sqrt{a}+\sqrt{b}+\sqrt{c}=\frac{p}{q}\)với p, q thuộc Z và (p, q)=1
=> \(\sqrt{b}+\sqrt{c}=\frac{p}{q}-\sqrt{a}\)
=> \(b+2\sqrt{bc}+c=\frac{p^2}{q^2}-2\frac{p}{q}\sqrt{a}+a\Leftrightarrow2\sqrt{bc}+\frac{2p}{q}\sqrt{a}=\frac{p^2}{q^2}+a-b-c\)
=> \(2\sqrt{bc}+\frac{2p}{q}\sqrt{a}\)là số hữu tỉ
=> \(\sqrt{bc}+\frac{p}{q}\sqrt{a}\)là số hữu tỉ
=> Đặt \(\sqrt{bc}+\frac{p}{q}\sqrt{a}\)=\(\frac{m}{n}\)với m,n thuộc Z, (m, n)=1
=> \(\sqrt{bc}=\frac{m}{n}-\frac{p}{q}\sqrt{a}\Rightarrow bc=\frac{m^2}{n^2}-\frac{2mp}{nq}\sqrt{a}+\frac{p^2}{q^2}.a\)
=> \(\frac{2mp}{nq}\sqrt{a}=\frac{m^2}{n^2}+\frac{p^2.a}{q^2}-bc\)
=>\(\frac{2mp}{nq}\sqrt{a}\)là số hữu tỉ
=> \(\sqrt{a}\)là số hữu tỉ vô lí với điều giả sử
=> Không có số nào là số vô tỉ hay cả ba số là số hữu tỉ
Không biết cách này có đúng không ạ?Em làm thử
Lời giải
Từ đề bài suy ra a,b,c>0.
Ta chứng minh: Nếu a;b;c và \(\sqrt{a};\sqrt{b};\sqrt{c}\) là số hữu tỉ.Suy ra \(a=\frac{m^2}{n^2};b=\frac{p^2}{q^2};c=\frac{t^2}{f^2}\) (là bình phương của 1 số hữu tỉ).Thật vậy,giả sử: \(a=\frac{m}{n};b=\frac{p}{q};c=\frac{t}{f}\) (không là bình phương của một số hữu tỉ)
Thế thì: \(\sqrt{a}=\sqrt{\frac{m}{n}};\sqrt{b}=\sqrt{\frac{p}{q}};\sqrt{c}=\sqrt{\frac{t}{f}}\).Suy ra
\(\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{\frac{m}{n}}+\sqrt{\frac{p}{q}}+\sqrt{\frac{t}{f}}\) là số vô tỉ,trái với giả thiết.
Do đó \(a=\frac{m^2}{n^2};b=\frac{p^2}{q^2};c=\frac{t^2}{f^2}\) suy ra \(\sqrt{a}=\frac{m}{n};\sqrt{b}=\frac{p}{q};\sqrt{c}=\frac{t}{f}\) là các số hữu tỉ (đpcm)