Cho \(\Delta\)ABC, ngoại tiếp đường tròn (I). Gọi M, N, P lần lượt là tiếp điểm của cạnh AB, AC, BC với đường tròn ( I). Kẻ PE vuông góc với đường thẳng ME ( E thuộc MN). Chứng minh EP là phân giác của góc BEC.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
4 tháng 3 2022
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
Xét \(\Delta MEP\)và \(\Delta INC\)có
\(\hept{\begin{cases}\widehat{EMP}=\widehat{NIC}\\\widehat{MEP}=\widehat{INC}=90^o\end{cases}}\)
\(\Rightarrow\Delta MEP\approx\Delta NIC\)
\(\Rightarrow\frac{ME}{IN}=\frac{EP}{NC}\)
\(\Rightarrow ME.NC=IN.EP\left(1\right)\)
Tương tự ta có:
\(\Delta NEP\approx\Delta IMP\)
\(\Rightarrow\frac{NE}{IM}=\frac{EP}{MB}\)
\(\Rightarrow NE.MB=IM.EP=IN.EP\left(2\right)\)
Từ (1) và (2) \(ME.NC=NE.MB\)
\(\Rightarrow\frac{ME}{NE}=\frac{MB}{NC}\)
Mà ta có: \(\widehat{BME}=\widehat{CNE}\)
\(\Rightarrow\Delta BME\approx\Delta CNE\)
\(\Rightarrow\widehat{MEB}=\widehat{NEC}\)
\(\Rightarrow\widehat{BEP}=\widehat{CEP}\)
\(\Rightarrow EP\)là phân giác \(\widehat{BEC}\)
Bạn alibaba nguyễn nhầm phần tam giác đồng dạng rồi, tam giac NEP đồng dạng IMB mới đúng chứ