K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1

Từ giả thiết: \(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\Rightarrow\dfrac{y}{x}\ge4\)

\(\Rightarrow A=2\left(\dfrac{16x}{y}+\dfrac{y}{x}\right)+\dfrac{2020y}{x}\ge2.2\sqrt{\dfrac{16xy}{xy}}+2020.4=8096\)

\(A_{min}=8096\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

29 tháng 3 2022

\(S=\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y^3}{16\left(x+16\right)}+\dfrac{2021}{2022}\)

\(\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y+16}{100}+\dfrac{16}{80}\ge3\sqrt[3]{\dfrac{x^3\left(y+16\right).16}{16\left(y+16\right).100.80}}=\dfrac{3x}{20}\)

\(tương\) \(tự\Rightarrow\dfrac{y^3}{16\left(x+16\right)}\ge\dfrac{3y}{20}\)

\(\Rightarrow S\ge\dfrac{3x}{20}+\dfrac{3y}{20}-\left(\dfrac{x+16}{100}+\dfrac{y+16}{100}\right)-2.\dfrac{16}{80}+\dfrac{2021}{2022}=\dfrac{3x+3y}{20}-\dfrac{x+y+32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}=\dfrac{15x+15y-x-y-32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}=\dfrac{14\left(x+y\right)-32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}\)

\(xy=16\le\dfrac{\left(x+y\right)^2}{4}\Rightarrow x+y\ge8\Rightarrow S\ge\dfrac{14.8-32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}=\dfrac{2}{5}+\dfrac{2021}{2022}\)

\(\Rightarrow minS=\dfrac{2}{5}+\dfrac{2021}{2022}\Leftrightarrow x=y=4\)

NV
29 tháng 3 2022

\(\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y+16}{100}+\dfrac{1}{5}\ge3\sqrt[3]{\dfrac{x^3\left(y+16\right)}{16.100.5\left(y+16\right)}}=\dfrac{3x}{20}\)

Tương tự: \(\dfrac{y^3}{16\left(x+16\right)}+\dfrac{x+16}{100}+\dfrac{1}{5}\ge\dfrac{3y}{20}\)

Cộng vế:

\(S+\dfrac{x+y+32}{100}+\dfrac{2}{5}\ge\dfrac{3\left(x+y\right)}{20}+\dfrac{2021}{2022}\)

\(S\ge\dfrac{9}{20}\left(x+y\right)-\dfrac{42}{25}+\dfrac{2021}{2022}\ge\dfrac{9}{20}.2\sqrt{xy}-\dfrac{42}{25}+\dfrac{2021}{2022}=...\)

4 tháng 4 2022

vì \(\left(4x^2-4x+1\right)^{2022}\ge0\left(\forall x\right)\),\(\left(y^2-\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}\ge0\left(\forall y\right)\),\(\left|x+y+z\right|\ge0\)

mà \(\left(4x^2-4x+1\right)^{2022}+\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}+\left|x+y-z\right|=0\)

=>\(\left\{{}\begin{matrix}4x^2-4x+1=0\\y^2+\dfrac{4}{5}y+\dfrac{4}{25}=0\\x+y-z=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-1=0\\y+\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\\dfrac{1}{2}-\dfrac{2}{5}-z=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)

KL: vậy \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)

NV
24 tháng 5 2021

\(P=\dfrac{1}{2021}\left(\dfrac{2021^2}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{2021}.\dfrac{\left(2021+1\right)^2}{x+y}=\dfrac{1}{2021}.\dfrac{2022^2}{\dfrac{2022}{2021}}=2022\)

\(P_{min}=2022\) khi \(\left(x;y\right)=\left(1;\dfrac{1}{2021}\right)\)

25 tháng 5 2021

sao cái đoạn \(\dfrac{1}{2021}\left(\dfrac{2021^2}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{2021}.\dfrac{\left(2021+1\right)^2}{x+y}\) làm kiểu gì ra thầy :)

13 tháng 12 2022

Cứu với ;-;

\(S=\dfrac{x^2+y^2+2xy}{x^2+y^2}+\dfrac{x^2+y^2+2xy}{xy}\)

\(=1+\dfrac{2xy}{x^2+y^2}+2+\dfrac{x^2+y^2}{xy}\)

\(=3+\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}+\dfrac{x^2+y^2}{2xy}\)

\(\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}>=2\cdot\sqrt{\dfrac{2xy}{x^2+y^2}\cdot\dfrac{x^2+y^2}{2xy}}=2\)

Dấu = xảy ra khi \(\dfrac{x^2+y^2}{2xy}=\dfrac{2xy}{x^2+y^2}\)

=>x=y

x^2+y^2>=2xy

=>\(\dfrac{x^2+y^2}{2xy}>=1\)

Dấu = xảy ra khi x=y

=>S>=6

Dấu = xảy ra khi x=y

6 tháng 2 2021

Thử nhé

Vì P là bất đẳng thức đối xứng nên dự đoán điểm rơi \(x=y=z=\dfrac{\sqrt{2021}}{3}\)

Thay vo P ta duoc \(P=4.\sqrt{2021}\)

----------------------------------------------------------

\(P=\sum\dfrac{\left(x+y\right)\sqrt{\left(y+z\right)\left(z+x\right)}}{z}\)

Cauchy-Schwarz:

\(\Rightarrow\left(y+z\right)\left(z+x\right)\ge\left(z+\sqrt{xy}\right)^2\Rightarrow\sqrt{\left(y+z\right)\left(z+x\right)}\ge z+\sqrt{xy}\)

\(\Rightarrow P\ge\sum\dfrac{\left(x+y\right)\left(z+\sqrt{xy}\right)}{z}\ge\sum\dfrac{xz+yz+x\sqrt{y}+y\sqrt{x}}{z}=\sum x+y+\dfrac{\left(x+y\right)\sqrt{xy}}{z}\ge\sum x+y+\dfrac{2xy}{z}\)

\(\Rightarrow P\ge2(x+y+z)+2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\)

Cauchy-Schwarz: \(\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\ge\left(\sqrt{\dfrac{xy}{z}.\dfrac{yz}{z}}+\sqrt{\dfrac{yz}{x}.\dfrac{zx}{y}}+\sqrt{\dfrac{zx}{y}.\dfrac{xy}{z}}\right)^2=\left(x+y+z\right)^2\)

\(\Rightarrow P\ge2(x+y+z)+2\left(x+y+z\right)=4\left(x+y+z\right)=4\sqrt{2021}\)

\("="\Leftrightarrow x=y=z=\dfrac{\sqrt{2021}}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Lời giải:

Áp dụng BĐT AM-GM:
$1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$P=x^2y^2+\frac{1}{x^2y^2}+2-\frac{17}{6}$

$=x^2y^2+\frac{1}{x^2y^2}-\frac{5}{6}$

$=(x^2y^2+\frac{1}{256x^2y^2})+\frac{255}{256x^2y^2}-\frac{5}{6}$

$\geq 2\sqrt{\frac{1}{256}}+\frac{255}{256.\frac{1}{4^2}}-\frac{5}{6}=\frac{731}{48}$

Vậy $P_{\min}=\frac{731}{48}$ khi $x=y=\frac{1}{2}$