K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1

Em nghĩ ,là chị xuống lớp 7 hc lại đi là vừa

1: Xét ΔBFC vuông tại F và ΔBDA vuông tại D có

\(\widehat{DBA}\) chung

Do đó: ΔBFC\(\sim\)ΔBDA

Suy ra: BF/BD=BC/BA

hay \(BF\cdot BA=BD\cdot BC\)

2: Ta có: BF/BD=BC/BA

nên BF/BC=BD/BA

Xét ΔBDF và ΔBAC có 

BF/BC=BD/BA

\(\widehat{DBF}\) chung

Do đó: ΔBDF\(\sim\)ΔBAC
SUy ra: \(\widehat{BDF}=\widehat{BAC}\)

3: Xét tứ giác ABDE có 

\(\widehat{ADB}=\widehat{AEB}=90^0\)

Do đó: ABDE là tứ giác nội tiếp

Suy ra: \(\widehat{BAC}+\widehat{BDE}=180^0\)

mà \(\widehat{CDE}+\widehat{BDE}=180^0\)

nên \(\widehat{CDE}=\widehat{BAC}\)

11 tháng 3 2023

hình tự kẻ ạ :3

a)

xét ΔABE và ΔACF có:

\(\left\{{}\begin{matrix}\widehat{A}\left(chung\right)\\\widehat{AFC}=\widehat{AEB}=90^0\left(CF\perp AB;BE\perp AC\right)\end{matrix}\right.\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)

\(\Rightarrow\dfrac{AC}{AB}=\dfrac{AF}{AE}\Leftrightarrow AC.AE=AB.AF\)

 

11 tháng 3 2023

ý b hình như sai đề r ạ =))

20 tháng 12 2019

Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath

22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

5 tháng 4 2016

Câu d) phải là HF.CK = HK.CF ?

a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F có

\(\widehat{DBA}\) chung

Do đó: ΔBDA~ΔBFC

=>\(\dfrac{BD}{BF}=\dfrac{BA}{BC}\)

=>\(\dfrac{BD}{BA}=\dfrac{BF}{BC}\)

Xét ΔBDF và ΔBAC có

\(\dfrac{BD}{BA}=\dfrac{BF}{BC}\)

\(\widehat{DBF}\) chung

Do đó: ΔBDF~ΔBAC

Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

\(\widehat{DCA}\) chung

Do đó: ΔCDA~ΔCEB

=>\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)

=>\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\)

Xét ΔCDE và ΔCAB có

\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\)

\(\widehat{DCE}\) chung

Do đó: ΔCDE~ΔCAB

b: \(BF\cdot BA+CE\cdot CA\)

\(=BD\cdot BC+CD\cdot CB\)

\(=BC\left(BD+CD\right)=BC^2\)

5 tháng 3 2017

Dễ mà bạn :)

6 tháng 3 2017

giup mình vs