tính A = \(\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)......\left(\dfrac{1}{2021^2}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2021}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{2021}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-2020}{2021}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2022}{2021}\)
\(=\dfrac{1}{2021}\cdot\dfrac{2022}{2}=\dfrac{1011}{2021}\)
`A=\(\frac{1}{2}-1)(\dfrac{1}{3}-1).....(\frac{1}{2021}-1)`
`=\frac{-1}{2}.\frac{-2}{3}.....\frac{-2020}{2021}`
`=(-1xx(-2)xx...xx(-2020))/(2xx3xx....xx2021)`
`=(1xx2xx..xx2020)/(2xx3xx...xx2021)`(do `1->2020` có 2020 số)
`=\frac{1}{2021}`
Ta có \(A=\dfrac{1}{2}+\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+\left(\dfrac{3}{2}\right)^4+...+\left(\dfrac{3}{2}\right)^{2021}\left(1\right)\)
\(\Rightarrow\dfrac{3}{2}A=\dfrac{3}{4}+\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+\left(\dfrac{3}{2}\right)^4+...+\left(\dfrac{3}{2}\right)^{2013}\left(2\right)\)
Lấy (2) - (1) ta được:
\(\dfrac{3}{2}A-A=\left(\dfrac{3}{2}\right)^{2013}+\dfrac{3}{4}-\dfrac{1}{2}-\dfrac{3}{2}\)
\(\dfrac{1}{2}A=\left(\dfrac{3}{2}\right)^{2013}+\dfrac{1}{4}\Rightarrow A=\dfrac{3^{2013}}{2^{2012}}+\dfrac{1}{2}\)
Vậy \(B-A=\dfrac{3^{2013}}{2^{2014}}-\dfrac{3^{2013}}{2^{2012}}+\dfrac{5}{2}\)
a) 2021 - (1/3)² . 3²
= 2021 - 1/9 . 9
= 2021 - 1
= 2020
b) 5/10 + 9 . (-3/2)
= 1/2 - 27/2
= -26/2
= -13
c) -10 . (-2021/2022)⁰ + (2/5)² : 2
= -10 . 1 + 4/25 . 2
= -10 + 8/25
= -68/7
\(a,2021-\left(\dfrac{1}{3}\right)^2\cdot3^2\\ =2021-\dfrac{1}{9}\cdot9\\ =2021-\dfrac{9}{9}\\ =2021-1=2020\\ b,\dfrac{5}{10}+9\cdot\dfrac{-3}{2}\\ =\dfrac{5}{10}+\dfrac{-27}{2}\\ =\dfrac{5}{10}+\dfrac{-135}{10}\\ =-\dfrac{130}{10}\\ =-13\\ c,-10\cdot\left(-\dfrac{2021}{2022}\right)^0+\left(\dfrac{2}{5}\right)^2:2\\ =-10\cdot1+\dfrac{4}{25}\cdot\dfrac{1}{2}\\ =-10+\dfrac{4}{50}\\ =-10+\dfrac{2}{25}\\ =-\dfrac{248}{25}\)
\(B=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2021.2023}\right)\)
\(=\dfrac{4}{1.3}.\dfrac{9}{2.4}...\dfrac{4088484}{2021.2023}\)
\(=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}...\dfrac{2022.2022}{2021.2023}\)
\(=\dfrac{2.2022}{1.2023}\)
ko biết mk làm có đúng ko nhma có gì sai thì đừng trách mk nhé
\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge\dfrac{63}{a^2+b^2+c^2}\)
\(6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{a}{ac}\right)+2021\ge\dfrac{54}{ab+bc+ac}+2021\ge\dfrac{54}{a^2+b^2+c^2}+2021\)
<=>\(\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{2021}{9}\)
\(p^2=\left(\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\right)^2\)
áp dụng bđt \(a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)
\(p^2\le3.\left(\dfrac{1}{3\left(2a^2+b^2\right)}+\dfrac{1}{3\left(2b^2+c^2\right)}+\dfrac{1}{3\left(2c^2+a^2\right)}\right)=\dfrac{1}{2a^2+b^2}+\dfrac{1}{2b^2+c^2}+\dfrac{1}{2c^2+a^2}\)
\(< =>p^2\le\dfrac{9}{2a^2+b^2+2b^2+c^2+2c^2+a^2}\)
<=> \(p^2\le3.\dfrac{1}{a^2+b^2+c^2}=\dfrac{2021}{3}< =>p\le\sqrt{\dfrac{2021}{3}}\)
dấu bằng xảy ra khi \(a=b=c=\sqrt{\dfrac{3}{2021}}\)
\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)+2021\le6\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+2021\)
\(\Rightarrow2021\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le\sqrt{2021.3}=\sqrt{6063}\)
Từ đó:
\(\sqrt{3\left(2a^2+b\right)}=\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}\ge\sqrt{\left(2a+b\right)^2}=2a+b\)
\(\Rightarrow\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}\le\dfrac{1}{2a+b}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{2}{a}+\dfrac{1}{b}\right)\)
Tương tự: \(\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}\le\dfrac{1}{9}\left(\dfrac{2}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\dfrac{1}{9}\left(\dfrac{2}{c}+\dfrac{1}{a}\right)\)
Cộng vế:
\(\Rightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{\sqrt{6063}}{3}\)
\(P_{max}=\dfrac{\sqrt{6063}}{3}\) khi \(a=b=c=\dfrac{3}{\sqrt{6063}}\)
-3/4 . -8/9 . ... . -4084440/4084440
= 3/4 . 8/9 . 4084440/4084441
=1.3/2.2 . 2.4/3.3 ... 2020.2022/2021.2021
=1.3.2.4...2020.2022/2.2.3.3...2021.2021
=(1.2...2020)(3.4...2022)/(2.3...2021)(2.3...2021)
=1.2022/2021.2=2022/4042