1+2+3+4+...+n =
Các bạn giúp mình với
Làm theo cách lớp 6 nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này mình không tính nhanh được, còn nếu tính bình thường thì:
Chắc bạn đã biết cách tính tổng của dãy số cách đều, ta có: \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
Do đó tổng cần tìm của bạn là:
\(S=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+50}\)
\(S=\frac{1}{\frac{2\cdot3}{2}}+\frac{1}{\frac{3\cdot4}{2}}+\frac{1}{\frac{4\cdot5}{2}}+...+\frac{1}{\frac{50\cdot51}{2}}=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{50\cdot51}\)
Vậy, \(\frac{1}{2}S=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{50\cdot51}\)
\(\frac{1}{2}S=\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+\frac{5-4}{4\cdot5}+...+\frac{51-50}{50\cdot51}\)
\(\frac{1}{2}S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}=\frac{1}{2}-\frac{1}{51}=\frac{51-2}{2\cdot51}=\frac{49}{2\cdot51}\)
Vậy \(S=\frac{49}{51}\)
Bài này chắc không phải lớp 4 nhé bạn!
A=25n+5n−18n−12n⎧⎩⎨=(25n−18n)−(12n−5n)⋮7=(25n−12n)−(18n−5n)⋮13→A⋮91
`@` `\text {Ans}`
`\downarrow`
`a)`
\(\left(\dfrac{x}{2}-1\right)^3+2=-\dfrac{11}{8}\) phải k bạn nhỉ? `11/8` k có bậc lũy thừa nào `=5` á.
`=>`\(\left(\dfrac{x}{2}-1\right)^3=-\dfrac{11}{8}-2\)
`=>`\(\left(\dfrac{x}{2}-1\right)^3=-\dfrac{27}{8}\)
`=>`\(\left(\dfrac{x}{2}-1\right)^3=\left(-\dfrac{3}{2}\right)^3\)
`=>`\(\dfrac{x}{2}-1=-\dfrac{3}{2}\)
`=>`\(\dfrac{x}{2}=-\dfrac{3}{2}+1\)
`=>`\(\dfrac{x}{2}=-\dfrac{1}{2}\)
`=> x=1`
Vậy, `x=1`
`b)`
\(\left(\dfrac{x}{3}+\dfrac{1}{2}\right)\left(75\%-1\dfrac{1}{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{3}+\dfrac{1}{2}=0\\0,75-1\dfrac{1}{2}x=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}\dfrac{x}{3}=-\dfrac{1}{2}\\-\dfrac{3}{2}x=\dfrac{75}{100}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=-3\\-3x\cdot100=2\cdot75\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\-3x\cdot100=150\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\-3x=1,5\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy, `x={-3/2; -1/2}.`
\(\frac{2}{3}\times\frac{4}{5}+\frac{4}{5}\times\frac{1}{2}+\frac{4}{5}\times\frac{1}{6}\)
\(=\left(\frac{2}{3}+\frac{1}{2}+\frac{1}{6}\right)\times\frac{4}{5}\)
\(=\frac{4}{3}\times\frac{4}{5}\)
\(=\frac{16}{15}\)
dễ như ko
\(1+2+3+...+n\)
\(=\frac{n\left(n+1\right)}{2}\)
chú ý nhé cách làm này chỉ áp dụng trong trường hợp này thôi