Một người đi xe đạp xuống một cái dốc dài 120m hết 30s. Tính tốc độ của xe đạp lúc này?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt:
\(s_1=120m\\ t_1=30s\\ s_2=60m\\ t_2=24s\\ \overline{v_1?}\\ v_2=?\\ v=?\)
Giải :
Vận tốc trung bình trên quãng đường dốc là:
\(v_1=\dfrac{s_1}{t_1}=\dfrac{120}{30}=4\left(m|s\right)\)
Vận tốc trung bình trên quãng đường nằm ngang là:
\(v_2=\dfrac{s_2}{t_2}=\dfrac{60}{24}=2,5\left(m|s\right)\)
Vận tốc trung bình trên cả quãng đường là:
\(v=\dfrac{s_1+s_2}{t_1+t_2}=\dfrac{120+60}{30+24}=\dfrac{10}{3}\approx3.33\left(m|s\right)\)
Vậy:
Vận tốc trên quãng đường dốc là: 4 m/s
Vận tốc trên quãng đường nằm ngang là: 2,5 m/s
Vận tốc trên cả quãng đường là: 3.33 m/s
Vận tốc của người đi xe đạp trên quãng đường đầu là
\(v=\dfrac{s'}{t'}=120:30=4\left(ms\right)\)
Vận tốc của người đi xe đạp trên quãng đường 2 là
\(v=\dfrac{s}{t}=50:24=2,5\left(ms\right)\)
Vận tốc trung bình người đi xe đạp trên cả 2 quãng đường là
\(v_{tb}=\dfrac{s+s'}{t+t'}=\dfrac{120+60}{24+30}=\dfrac{180}{54}=3,333\left(ms\right)\)
Vận tốc Tb của xe là :
\(V_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{120+60}{24+30}=\dfrac{180}{54}\left(\dfrac{m}{s}\right)\)
Đổi 9 km/h=2,5 m/s
\(v_{tb}=\dfrac{s_1+s_2}{t_1+t_2}=\dfrac{s_1+s_2}{t_1+\dfrac{s_2}{v_2}}=\dfrac{120+60}{30+\dfrac{60}{2,5}}=\dfrac{10}{3}\left(\dfrac{m}{s}\right)\)
Cho biết:
\(S_{khixuongdoc}=50m\)
\(t_{khixuongdoc}=20s\)
\(v_{khixuongdoc}=?\)
Tốc độ của người đi xe đạp lúc bắt đầu xuống dốc tới khi dừng lại hẳn là:
\(v=\dfrac{s}{t}=\dfrac{50}{20}=2,5\) (m/s)
vậy, tốc độ của người đi xe đạp khi xuống dốc là 2,5 m/s.
TT
\(s=120m\)
\(t=30s\)
v = m/s
Giải
Tốc độ của xe đạp lúc này là;
\(v=\dfrac{s}{t}=\dfrac{120}{30}=4\) m/s