Cho tam giác cân ABC,AB=AC, đường cao AH . Kẻ HE vuông góc với AC . Gọi O là trung điểm của EH, I là trung điểm của EC.Chứng minh:
a) IO vuông góc với AH
b) AO vuông góc với BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.) xét tam giác ehc:
o và i là trung điểm của he và ec => oi là trung bình cua tam giác ehc
suy ra oi//hc mà hc vuong góc với ah
suy ra oi vuông góc với ah(điều phải chứng minh)
b.) xét tam giác ABC:
AH là đường cao và là đường trung tuyến ứng với cạnh đáy BC nên H là trung điểm của BC
xét tam giác BEC:
H và I là trung điểm của BC và CE suy ra HI là chung bình của tam giác BEC
suy ra HI//BE (1)
tam giác AHI có: OI vuông AH;HE vuông AI mà HI và OI cắ tại O nên O là trức tâm của tam giác AHI suy ra HI vuông AI (2)
từ 1 và 2 ta suy ra AO vuông BE
k cho mk nhé
a) Tam giác ABO và tam giác AEO có:
Góc AOB = góc AOE (=90 độ)
Góc BAO = góc EAO (AO là phân giác góc BAE)
Cạnh AO chung
=> tam giác ABO = tam giác AEO (g-c-g) (1)
b) Từ (1) => AB = AE => tam giác BAE cân tại A (2)
c) Từ (2) => AO là đường cao cũng là trung tuyến của tam giác BAE
=> AD là đường trung trực của BE
d) Tam giác BAE có hai đường cao AO và BK cắt nhau tại M nên M là trực tâm.
Gọi H là giao điểm của EM và AB => EH đi qua trực tâm M nên là đường cao thứ ba của tam giác BAE
=> EM vuông góc AB
mà BC vuông góc AB (gt)
=> EM // BC
a, Xét tam giác EHC. có;
+ O và I là trung điểm HE và EC => OI là đường trung bình tam giác EHC
=> OI//HC
Mà HC⊥AH
=>OI⊥AH (đpcm)
b, Xét tam giác ABC có :
AH là đường cao đồng thời là trung tuyến ứng với đáy BC nên H là trung điểm BC
Xét tam giác BEC, có:
H và I là trung điểm BC và CE => HI là đường trung biình tam giác BEC
=> HI//BE. (1)
Xét tam giác AHI có :OI⊥AH, HE⊥AI mà HE và IO cắt nhau ở O nên O là trực tâm của △AHI
=> AO⊥HI (2)
+ Từ (1) và (2) ta có AO⊥BE
h mik cx đang mắc bài nè nhưng lời giải của bn kia là lp8 đâu phải lp7 đâu
nếu cách lp8 thì ra lâu rùi