Thu Gọn:
(1+1/1.3)(1+1/2.4)(1+1/3.5)...(1+1/99.100)
Các bn giúp mik nhé!Mik cần gấp nhớ giải chi tiết nữa nhé!thank you
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu đề là tìm n để phím chia hết thì làm như sau
n^2 +3n -7 : n-3
n(n+3)-7: n-3
vì n(n+3) chia hết cho n+3 nên để n^2 +3n -7 chia hết cho n+3 thì -7 chia hết cho n+3
=> n+3 thuộc Ư(7)={1,7,-1,-7}
n+3=1 => n= -2
n+3=7 => n= 4
n+3 = -1 => n=-4
n+3=7 => n =-10
b, n^2 +5 : n+1
n^2 -1+6 : n+1
(n-1)(n+1) + 6: n+1 ( n^2 -1 =(n+1)(n-1) là dùng hằng đẳng thức lớp 8 sẽ học)
vì (n-1)(n+1) chia hết cho n+1 nên để n^2 +5 chia hết n+1 thì 6 phải chia hết cho n+1
=> n+1 thuộc Ư(6)={1,2,3,6,-1,-2,-3,-6}
n+1 =1 =>n=0
n+1=2=>n=1
n+1=3=>n=2
n+1=6=>n=5
n+1=-1=>n=-2
n+1=-2=>n=-3
n+1=-3=>n=-4
n+1=-6=>n=-7
MÌNH BIK LÀM CÂU A THUI, mình ko ghi lại đề nha
P=1/2.2/3.3/4........99/100
(Nhân tử với tử, mẫu nhân với mẫu ) ta có
P=1.2.3.4.......99/2.3.4...........100
P=1/100
\(P=\frac{1}{2}.\frac{2}{3}......\frac{99}{100}=\frac{1.2.3....99}{2.3.4....100}=\frac{1}{100}\)
\(Q=\frac{4}{1.3}.\frac{9}{2.4}.....\frac{9901}{99.100}=\frac{2^2}{1.3}.\frac{3^2}{2.4}.....\frac{99^2}{99.100}=\frac{2^2.3^2...99^2}{1.2.3^2....98^2.99.100}=\frac{2.99}{100}=\frac{99}{50}\)
Hướng dẫn:
\(M=\frac{1^2}{1.3}+\frac{2^2}{3.5}+\frac{3^2}{5.7}+...+\frac{99^2}{197.199}\)
\(\Rightarrow4M=\frac{1.4}{1.3}+\frac{4.4}{3.5}+\frac{9.4}{5.7}+...+\frac{9801.4}{197.199}\)
\(\Rightarrow4M=\frac{2.2}{1.3}+\frac{4.4}{3.5}+\frac{6.6}{5.7}+...+\frac{198.198}{197.199}\)
Đến đoạn này bạn đưa về dạng tổng quát nhé:
\(\frac{n^2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{4}+\frac{1}{8\left(2n-1\right)}-\frac{1}{8\left(2n+1\right)}\) (Tự phân tích)
Sau đó thay vào A. Kết quả tìm được là \(A=\frac{1}{8}-\frac{1}{8.2013}+\frac{1006}{4}=251,6249379\)
S=(1/1.3+1/3.5+.....+1/7.9)+(1/2.4+1/4.8+1/8.10)
2S=1/2.(1-1/3+1/5-1/5+....+1/7-1/9)+(1/2-1/4+1/4-1/8+1/8-1/10)
2S=1/2.(1-1/9)+(1/2-1/10)
2S=1/2.(8/9+2/5)