Cho hàm số y=ax^2+bx+c đi qua 3 điểm A(-2;2) B(-1;-5) C(1;-1). Xác định a,b,c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=4\\4a-2b+c=4\\c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=2\\2a-b=2\\c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=0\\c=0\end{matrix}\right.\\ \Leftrightarrow y=x^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=-1\\4a+2b+c=3\\a-b+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=-4\\a+b+c=-1\\4a+2b+c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2\\a+c=1\\4a+c=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-2\\c=-1\end{matrix}\right.\)
(P) có đỉnh I(1;1) và đi qua A(2;3) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=1\\a\cdot2^2+b\cdot2+c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-4a\\4a+2b+c=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=-2a\\4a+2\cdot\left(-2a\right)+c=3\\b^2-4ac=-4a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=3\\b=-2a\\4a^2-12a+4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\4a^2-8a=0\\b=-2a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=3\\4a\left(a-2\right)=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\\left[{}\begin{matrix}a=0\left(loại\right)\\a=2\left(nhận\right)\end{matrix}\right.\\b=-2\cdot2=-4\end{matrix}\right.\)
=>c=3;a=2;b=-4
=>\(S=3^2+2^2+\left(-4\right)^2=25+4=29\)
=>Chọn C
\(A\left(1;3\right)\) thuộc đths \(\Rightarrow a+b+c+1=3\Rightarrow a+b+c=2\) (1)
\(B\left(-1;4\right)\) thuộc đths \(\Rightarrow-a+b-c+1=4\Rightarrow-a+b-c=3\) (2)
Ta có \(y'\left(x\right)=3ax^2+2bx+c\)
\(y'\left(2\right)=0\Rightarrow12a+4b+c=0\) (3)
Từ (1), (2) và (3) ta được \(a=-\dfrac{19}{22};b=\dfrac{5}{2};c=\dfrac{4}{11}\)
Vậy hàm số đã cho là \(y=-\dfrac{19}{22}x^3+\dfrac{5}{2}x^2+\dfrac{4}{11}x+1\)
y = ax2 + bx + c đạt Max bằng 5 tại x = -2
--> a < 0; \(\dfrac{4ac - b^2}{4a}\) = 5;
\(\dfrac{-b}{2a}\) = -2
--> b = 4a; \(\dfrac{4ac - 16a^2}{4a}\) = 5
--> b = c - 5 = 4a
Đồ thị hàm số đi qua M(1; -1)
--> a + b + c = -1
--> a + 4a + 4a + 5 = -1
<=> 9a = -6
<=> a = \(\dfrac{-2}{3}\) --> b = \(\dfrac{-8}{3}\); c = \(\dfrac{7}{3}\)
--> \(y = \dfrac{-2}{3}x^2\ -\)\(\dfrac{8}{3}x\) + \(\dfrac{7}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}4a-2b+c=2\left(1\right)\\a-b+c=-5\left(2\right)\\a+b+c=-1\left(3\right)\end{matrix}\right.\)
\(\left(2\right)+\left(3\right)\Leftrightarrow a+c=-3\) \(\Rightarrow b=2\)
\(\Rightarrow4a+c=2+4=6\)
\(\Rightarrow\left\{{}\begin{matrix}a+c=-3\\4a+c=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\c=-6\end{matrix}\right.\)