K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2023

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)

\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)

Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)

\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)

3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)

\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)

Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)

5 tháng 1 2020

\(\left(3a+3b+5c\right)-\left(-3a+2b+4c\right).\)

\(=3a+3b+5c+3a-2b-4c\)

\(=6a+b+c\)

16 tháng 12 2018

a) 3a + 4b - 5c - 2a - 3b + 5c

= ( 3a - 2a ) + ( 4b - 3b ) - ( 5c - 5c )

= a + b

b) 7a + 3b - 4c - 3a + 2b - 2c - 4a + b - 2c

= ( 7a - 3a - 4a ) + ( 3b + 2b + b ) - ( 4c + 2c + 2c ) 

= 6b - 8c

16 tháng 12 2018

a) 3a + 4b - 5c - 2a - 3b + 5c

= (3a - 2a) + (4b - 3b) - (5c - 5c)

= a + b - 0 = a + b

b) 7a + 3b - 4c - 3a + 2b - 2c - 4a + b - 2c

= (7a - 3a - 4a) + (3b + 2b + b) - ( 4c + 2c + 2c)

= 0 + 6b - 8c = 6b - 8c

30 tháng 12 2020

Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\)

\(\rightarrow a=2k;b=3k;c=4k\)

\(M=\dfrac{3a+2b-4c}{8a-5b+2c}\\ =\dfrac{3.2k+2.3k-4.4k}{8.2k-5.3k+2.4k}\\ =\dfrac{6k+6k-8k}{16k-15k+8k}\\ =\dfrac{4k}{9k}=\dfrac{4}{9}\)

Vậy \(M=\dfrac{4}{9}\)

20 tháng 1 2021

mình cảm ơn bạn

 

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\dfrac{2a+3c}{3a+4c}=\dfrac{2bk+3dk}{3bk+4dk}=\dfrac{2b+3d}{3b+4d}\)

10 tháng 12 2015

nhanh len lau qua do