Giúp mình nha các bạn :)
Cho S = 70 + 72 + 74 + 76 + . . . + 72018
a) Tính S
b) Chứng minh rằng S chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=7^4\left(7^2+7-1\right)=7^4\cdot55=7^4\cdot5\cdot11⋮11\)
4/ Chứng minh rằng :a. 76 +75 – 74 chia hết cho 11 . bạn nào giúp mình với (giải thích cho mình hiểu luôn nha các bạ... - Hoc24
\(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\cdot55⋮11\)
a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)
\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)
\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)
Vậy \(S⋮5\)
a) Ta có:
\(S=2+2^3+2^5+...+2^{99}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)
\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)
\(S=2.5+2^3.5+...+2^{97}.5\)
\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)
\(\Rightarrow S⋮5\)
\(S=5+5^2+5^3+5^4+...+6^{96}\)
sử dụng phương pháp nhóm ta được:
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{95}+5^{96}\right)\)
sử dụng phương pháp phân tích đa thức thành nhân tử ta được:
\(S=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{94}\left(5+5^2\right)\)
\(S=30+5^2\cdot30+...+5^{94}\cdot30\)
\(S=30\cdot\left(1+5^5+...+5^{94}\right)⋮10\)
vậy => đpcm
S = 5+52+53+54+...+596
S = (5+52) + (53+ 54)+....+ ( 595+ 596)
S = 30 + 52( 5+ 52) +..... + 594( 5+ 52)
S= 30 + 52.30 + .... + 594. 30
S= 30 ( 1 + 52+...+ 594)
S= [ 10. 3( 1 + 52+...+ 594)] chia hết cho 10
=> S chia hết cho 10
a+b chia hết cho 5
\(\Rightarrow\)3a+3b chia hết cho 5
Xét hiệu:(3a+3b)-(3a-12b)=15b chia hết cho 5
\(\Rightarrow\)3a-12b chia hết cho 5 (vì 3a+3b chia hết cho 5)
Vậy 3a-12b chia hết cho 5
Bầi 2:
a: A=x+54
Để A chia hết cho 2 thì x chia hết cho 2
b: Để A chia hết cho 3 thì x chia hết cho 3
Cho S=5+52+53+...+52004 chứng minh S chia hết cho 126 và chia hết cho 65. Mong các bạn giúp đỡ mình!
S = 5 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + ... + 5^2004
5S = 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + ... + 5^2004 + 5^2005
=> 4S = 5^2005 - 5 = 5 (5^2004 - 1) => S = 5 (5^2004 - 1)/4
Để chứng minh S chia hết cho 126 ta chứng minh 5 (5^2004 - 1) chia hết cho 126.4=504=7.8.9
+ 7: Có 5^2 = 25 chia 7 dư (-3) => 5^2004 = (5^2)^1002 đồng dư vs (-3)^1002 = 3^1002 trong phép chia cho 7.
Lại có 3^3 = 27 chia 7 dư (-1) => 3^1002 = (3^3)^334 đồng dư vs (-1)^334 = 1 trong phép chia cho 7 => 3^1002 chia 7 dư 1
=> (5^2004 -1) chia hết cho 7
+ 8: Có 5^2 = 25 chia 8 dư 1 => 5^2004 = (5^2)^1002 đồng dư vs 1^1002 =1 trong phép chia cho 8
=> 5^2004 chia 8 dư 1 => (5^2004 - 1) chia hết cho 8
+ 9: Có 5^2 = 25 chia 9 dư (-2) => 5^2004 = (5^2)^1002 đồng dư vs (-2)^1002 = 2^1002 trong phép chia cho 9
Lại có: 2^3 = 8 chia 9 dư (-1) => 2^1002 = (2^3)^334 đồng dư vs (-1)^334 =1 trong phép chia cho 9
=> 2^1002 chia 9 dư 1
Suy ra 5^2004 chia 9 dư 1 => (5^2004 - 1) chia hết cho 9
Vì 7,8,9 đôi một ng tố cùng nhau nên (5^2004 - 1) chia hết cho 7.8.9 = 504 => đpcm.
Để CM S chia hết cho 65 = 5.13 ta chứng minh (5^2004 - 1) chia hết cho 13
Có 5^2 = 25 chia 13 dư (-1) => 5^2004 đồng dư vs (-1)^1002 = 1 trong phép chia cho 13 => 5^2004 chia 13 dư 1 => 5^2004 -1 chia hết cho 13
Vậy S chia hết cho 65
Tick nha
1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số
Gọi số phải tìm là A
Ta có A + 4 chia hết cho 5 , 7 , 9
Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315
Do đó A = 315 - 4 = 311
2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100
S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )
S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )
S = 1.30 +...+2^96.30
S = ( 1 +...+2^96 )30
Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15
Hay S chia hết cho 15
b) Vì S cha hết cho 30 nên S chia hết cho 10
Suy ra S có tận cùng là 0
c) S = 2^1 + 2^2 + 2^3 +...+2^100
2S = 2^2 + 2^3 + 2^4 +...+ 2^101
2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )
S = 2^101 - 2^1
S = 2^101 - 2
1. 158
2a. 0 ( doan nha )
b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )
= 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)
= 2.15+2^5.15+...+2^97.15
= 15.(2+2^5+...+2^97) chia het 15
c.2^101-2^1
3. chiu !
a,Tính S
S=70+72+74+....+72018
72.S=72.(70+72+74+...+72018)
72.S=72+74+76+...+72020
Mà S=70+74+76+....+72018
=>72.S-S=72020-1
Câu B để mk suy nghĩ đã
Phần b) :
72020 - 1 = (72)1010 - 1 = 491010 - 1
Theo tính chât tìm sô tận cùng thì số có tận cùng là 9 và số mũ chẵn
=> Số tận cùng của nó sẽ là 1
Với số tận cùng = 1 mà trừ cho 1 = . . .1 - 1 = . . .0
Mà số chia hết cho 5 có số tận cùng = 0 hoặc 5
=> S chia hết cho 5
P/s : Mk chỉ dựa vào câu a của bạn vì mk ko tìm đc đáp án