Cho góc XOY điểm M thuộc tia phân giác của góc qua M kẻ đuoengf thẳng vuông góc OX tại A cắt OX tại C. Qua M kẻ đường thẳng vuông góc B cắt OX tại điểm D A. Cm OA bằng OB B. CM OM là đường trung trực AB C. Tìm tập hợp các điểm đều D và C D. Cm AB song song vs CD E. qua D kẻ đường thẳng A vuông góc vs OX đường thẳng B vuông góc vs OY. N là giao điểm của A và B Cm Q, M, N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XÉT TAM GIÁC OAM VÀ TAM GIÁC OMB CÓ
GÓC OAM = GÓC OBM=90*
OM CHUNG LÀ CẠNH HUYỀN CHUNG
MA=MB
=>TAM GIÂC OAM = TA GIÁC OBM (CH GN)
=>OA=OB
=>TAM GIÁC OAB CÂN TẠI A
B, XÉT TAM GIÁC MAD VÀ TAM GIÁC MBE CÓ
GÓC A=GÓC B =90*
GÓC M CHUNG
AD=BE
=>TAM GIÁC MAD=MBE
=>MD=ME
XÉT TAM GIÁC OAM VÀ TAM GIÁC OMB CÓ
GÓC A=GÓC B=90*
OM LÀ CẠNH HUYỀN CHUNG
GÓC O CHUNG]
=>TAM GIÁC OAM = TAM GIÁC OMB(CH-GN)
=>OA=OM(CẠNH TƯƠNG ỨNG)
=> TAM GIÁC OAB CÂN TẠI O
B,XÉT TAM GIÁC ADM VÀ TAM GIÁC MBE CÓ
GÓC A = GÓC B=90*
GÓC AMD= GÓC EMB
GÓC M CHUNG
=>TAM GIÁC ADM = TA GIÁC MEB(GCG)
=>MD=ME(đpcm)
+) Xét tg ONB và OMA có
OB= OA (gt)
Góc O chung
Góc B = góc A(=90)
=> ∆ OMA (ch - gn)
=> />+) Ta có OA + AN = ON
OB+ BM= OM
Mà OA= OB
/>=> AN = BM
+) XÉT ∆OAH và ∆ OBH
OH cạnh cchung
OA= OB
góc A = góc B
=>∆ OAH= ∆ OBH( cho CGV)
=> AOH= BOH
=> OH là phân giác xOy
ta có (cmt)
=> ∆ ONM cân tại O
OI là trung tuyến => OI là đường cao
OI vuông góc NM(1)
Ta có MA, NB lần lượt vuông góc với Ox, Oy
MA cắt NB tại H
=> H là trực tâm của ∆OMN
=> OH vuông góc NM(2)
từ (1)(2)=> O , H , I thẳng hàng ( qua O chỉ kẻ đc duy nhất 1 đường thẳng vuông góc NM)