CMR:2n.2 chia hết cho 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n+2-2n+2+3n-2n
= ( 3n+2+3n)-(2n+2+2n)
= 3n(32+1)-2n(22+1)
= 3n.10-2n-1.10=10(3n-2n-1) chia het cho 10
b) 7n+4-7n=7n(74-1)=7n.2400
Do 2400 chia hết cho 30=>7n.2400 chia hết cho 30
Vậy 7n+4-7n chia hết cho 30 với mọi n thộc N
c) 62n+3n+2+3n=22n.3n+3n(32+1)
=22n.32n+3n.11 chia het cho 11
đ) câu hỏi tương tự nhé
l-i-k-e mình nhé
\(2.\) Tính chất: Trong \(n\) số nguyên liên tiếp có một và chỉ một số chia hết cho \(n\)
Giả sử \(n,\) \(n+1,...,\) \(n+1899\) là dãy \(1900\) số tự nhiên liên tiếp \(\left(1\right)\)
Xét \(1000\) số tự nhiên liên tiếp từ \(n,\) \(n+1,...,\) \(n+999\) \(\left(2\right)\) thuộc dãy số \(\left(1\right)\)
Theo tính chất trên, sẽ có một số chia hết cho \(1000\)
Giả sử số đó là \(n_0\), khi đó \(n_0\) có tận cùng là \(3\) chữ số \(0\) và \(m\) là tổng các chữ số của \(n_0\)
Khi đó, ta xét \(27\) số tự nhiên gồm:
\(n_0,\) \(n_0+9,\) \(n_0+19,\) \(n_0+29,\) \(n_0+39,...,\) \(n_0+99,\) \(n_0+199,...,\) \(n_0+899\) \(\left(3\right)\)
Sẽ có tổng các chữ số gồm \(27\) số tự nhiên liên tiếp là \(m,\) \(m+1,\) \(m+2,...,\) \(m+26\)
Do đó, có \(1\) số chia hết cho \(27\)
Vậy, trong \(1900\) số tự nhiên liên tiếp có \(1\) số có tổng các chữ số chia hết cho \(27\)