giúp mình với
so sánh 2225 và 3151
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có : A = 275 = (33)5 = 315
B = 2433 = (35)3 = 315
Vì 315 = 315 => A = B
b )
Ta có : A = 2300 = (23)100 = 8100
B = 3200 = (32)100 = 9100
Vì 8100 < 9100 => A<B
2225 = 23.75 = (23)75 = 875
3150 = 32.75 = (32)75=975
8 < 9 ⇒ 875 < 975
Vậy : 2225 < 3150
a/ \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{151}>3^{150}=\left(3^2\right)^{75}=9^{75}\)
Mà \(8^{75}< 9^{75}\)
=> \(2^{225}< 3^{150}< 3^{151}\)
b/ Xét n là số lẻ
=> n + 1 chẵn
=> n + 1 ⋮ 2
=> (n+1)(3n+2) ⋮2
Xét n là số chẵn
=> 3n chẵn
=> 3n+2 chẵn
=> (n+1)(3n+2) ⋮2
Do đó A = (n+1)(3n+2) chia hết cho 2 với mọi số tự nhiên n
\(1,\\ a,2^x=16=2^4\Rightarrow x=4\\ b,3^{x+1}=9^x=3^{2x}\\ \Rightarrow x+1=2x\Rightarrow x=1\\ c,2^{3x+2}=4^{x+5}=2^{2\left(x+5\right)}\\ \Rightarrow3x+2=2x+10\Rightarrow x=8\\ d,3^{2x-1}=243=3^5\\ \Rightarrow2x-1=5\Rightarrow x=3\\ 2,\\ a,2^{225}=8^{75}< 9^{75}=3^{150}\\ b,2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\\ c,99^{20}=\left(99^2\right)^{10}< \left(99\cdot101\right)^{10}=9999^{10}\\ 3,\\ a,12^8\cdot9^{12}=2^{16}\cdot3^8\cdot3^{24}=2^{16}\cdot3^{32}=\left(2\cdot3^2\right)^{16}=18^{16}\\ b,75^{20}=\left(3\cdot5^2\right)^{20}=3^{20}\cdot5^{40}=\left(3^{20}\cdot5^{10}\right)\cdot5^{30}=\left(3^2\cdot5\right)^{10}\cdot5^{30}=45^{10}\cdot5^{30}\)
Bài 1:
a) \(\Rightarrow2^x=2^4\Rightarrow x=4\)
b) \(\Rightarrow3^{x+1}=3^{2x}\Rightarrow x+1=2x\Rightarrow x=1\)
c) \(\Rightarrow2^{3x+2}=2^{2x+10}\Rightarrow3x+2=2x+10\Rightarrow x=8\)
d) \(\Rightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow x=3\)
Bài 2:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Bài 3:
a) \(12^8.9^{12}=\left(4.3\right)^8.9^{12}=4^8.3^8.9^{12}=2^{16}.9^4.9^{12}=2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\)
b) \(75^{20}=\left(75^2\right)^{10}=5625^{10}=\left(45.125\right)^{10}=45^{10}.125^{10}=45^{10}.5^{30}\)
Bạn ấn\(fx\)là ra phân số mà.
Mình giải như sau:
\(\frac{228}{225}>\frac{2228}{2225}\)
\(\frac{36}{39}>\frac{35}{41}\)
nhé bạn
\(\frac{228}{225}>\frac{2228}{2225}\)
\(\frac{36}{39}>\frac{35}{41}\)
2225 + 2222 = 4447
Hôm nay là sinh nhật của mình bạn có thể k mình được chứ?
\(A=111.....111.10^{2017}+2222.....2222.10+5\)
\(=\frac{10^{2015}-1}{9}.10^{2017}+20.\frac{10^{2016}-1}{9}+5\)
\(=\frac{10^{4032}-10^{2017}+2.10^{2017}-20+45}{9}\)
\(=\frac{10^{4032}+2.5.10^{2016}+25}{9}\)
\(=\left(\frac{10^{2016}+5}{3}\right)^2\) là số chính phương (ĐPCM)
đề bài bảo có 2005 số 2 nên phải là 10^2006 chứ bạn, mấy cái còn lại cũng thế!
Ta có:
\(2^3< 3^2\Rightarrow\left(2^3\right)^{75}< \left(3^2\right)^{75}\Rightarrow2^{225}< 3^{150}\Rightarrow2^{225}< 3^{151}\)