K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2020

khó quá bn ơi

19 tháng 5 2020

Ta có : A^ + B^ = C^ (*)

Mà : A^ + B^ + C^ = 180* ( tổng 3 góc của 1 tam giác )  (**)

Từ * và ** suy ra A^ + B^ = C^ = 90* (***)

Lại có : 2A^ = 3B^

<=> 2A^ + 2B^ = 5B^

<=> 180* = 5B^

<=> B^ = 180*/5 = 36*

Thay vào ***  ta có : 

A^ + 36* = 90* 

<=> A^ = 54*

Vậy góc A = 54*

p/s : không biết thì đừng có gáy nhé bạn 

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Áp dụng hệ quả của định lí cosin, ta có:

 \(\begin{array}{l}\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\\ \Rightarrow \cos A = \frac{{{{13}^2} + {{15}^2} - {{24}^2}}}{{2.13.15}} =  - \frac{7}{{15}};\cos B = \frac{{{{24}^2} + {{15}^2} - {{13}^2}}}{{2.24.15}} = \frac{{79}}{{90}}\\ \Rightarrow \widehat A \approx 117,{8^ \circ },\widehat B \approx 28,{6^o}\\ \Rightarrow \widehat C \approx 33,{6^o}\end{array}\)

1 tháng 12 2016

Xét tam giác ABC có:góc A+góc B+góc C=180 độ(tổng 3 góc trong tam giác)

\(\Rightarrow\)góc A+góc B=180 độ-góc C

\(\Rightarrow\)góc B+góc C=180 độ-góc A

góc A-góc B=22 độ

\(\Rightarrow\)góc A=\(\frac{\text{180 độ-góc C+22 độ}}{2}\)

\(\Rightarrow\)góc B=\(\frac{\text{180 độ-góc C+22 độ}}{2}-22độ\left(1\right)\)

Mà góc B-góc C=22 độ

\(\Rightarrow\)góc B=\(\frac{\text{180 độ-góc A+22 độ}}{2}\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\)\(\frac{\text{180 độ-góc C+22 độ}}{2}-22độ=\frac{\text{180 độ-góc A+22 độ}}{2}\)

\(\Rightarrow\)\(\frac{\text{180 độ-góc C+22 độ-44độ}}{2}=\frac{\text{180 độ-góc A+22 độ}}{2}\)

\(\Rightarrow\)góc C-22 độ=góc A+22 độ

\(\Rightarrow\)góc A=góc C+44 độ

\(\Rightarrow\)góc B=góc C+22 độ

Xét tam giác ABC có:góc A+góc B+góc C=180 độ(tổng 3 góc trong tam giác)

Hay góc C+44 độ+góc C+22 độ+góc C=180 độ

3.góc C+66 độ=180 độ

góc C=\(\frac{180độ-66độ}{3}\)

góc C=38 độ

\(\Rightarrow\)góc A=38 độ +44 độ

góc A=82 độ

1 tháng 12 2016

@Phạm Nguyễn Tất Đạt thanks nhìu nha

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Trong tam giác ABC có: \(\widehat A + \widehat B + \widehat C = 180^\circ \)

Mà số đo ba góc \(\widehat A,\widehat B,\widehat C\) của tam giác ABC tỉ lệ với 5;6;7 nên \(\dfrac{{\widehat A}}{5} = \dfrac{{\widehat B}}{6} = \dfrac{{\widehat C}}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\begin{array}{l}\dfrac{{\widehat A}}{5} = \dfrac{{\widehat B}}{6} = \dfrac{{\widehat C}}{7} = \dfrac{{\widehat A + \widehat B + \widehat C}}{{5 + 6 + 7}} = \dfrac{{180^\circ }}{{18}} = 10^\circ \\ \Rightarrow \widehat A = 10^\circ .5 = 50^\circ \\\widehat B = 10^\circ .6 = 60^\circ \\\widehat C = 10^\circ .7 = 70^\circ \end{array}\)

Vậy số đo 3 góc \(\widehat A,\widehat B,\widehat C\) lần lượt là \(50^\circ ;60^\circ ;70^\circ \)

Gọi \(\widehat{A}:\widehat{B}:\widehat{C}\)lần lượt là a,b,c

Do \(\widehat{A}:\widehat{B}:\widehat{C}=3:4:5\)

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}\)

Mà tổng \(\widehat{A}:\widehat{B}:\widehat{C}=180^o\)(tổng 3 góc trong tam giác)

=>\(\frac{a+b+c}{3+4+5}=\frac{180}{12}=15\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{3}\\\frac{b}{4}\\\frac{c}{5}\end{cases}}=15\)

\(\Rightarrow\hept{\begin{cases}a=45^o\\b=60^o\\c=75^o\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\widehat{A}=45^o\\\widehat{B}=60^o\\\widehat{C}=75^o\end{cases}}\)

MÀ \(\Delta ABC=\Delta A'B'C'\)

\(\Rightarrow\hept{\begin{cases}\widehat{A}=\widehat{A'}\\\widehat{B}=\widehat{B'}\\\widehat{C}=\widehat{C'}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\widehat{A'=45^o}\\\widehat{B'=60^o}\\\widehat{C'}=75^o\end{cases}}\)

21 tháng 10 2018

Đặt: \(\widehat{A}=3x\Rightarrow\hept{\begin{cases}\widehat{B}=4x\\\widehat{C}=5x\end{cases}}\)

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow3x+4x+5x=180^o\)

\(\Rightarrow x=15\)

\(\Rightarrow\hept{\begin{cases}\widehat{A'}=\widehat{A}=3x=45^o\\\widehat{B}'=\widehat{B}=4x=60^o\\\widehat{C'}=\widehat{C}=75^o\end{cases}}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Áp dụng định lí cosin trong tam giác ABC, ta có:

\(\begin{array}{l}{c^2} = {b^2} + {a^2} - 2ab\cos C\\ \Leftrightarrow {c^2} = 26,{4^2} + 49,{4^2} - 2.26,4.49,4\cos {47^ \circ }20'\\ \Rightarrow c \approx 37\end{array}\)

Áp dụng định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

\(\begin{array}{l} \Leftrightarrow \frac{{49,4}}{{\sin A}} = \frac{{26,4}}{{\sin B}} = \frac{{37}}{{\sin {{47}^ \circ }20'}}\\ \Rightarrow \sin A = \frac{{49,4.\sin {{47}^ \circ }20'}}{{37}} \approx 0,982 \Rightarrow \widehat A \approx {79^ \circ }\\ \Rightarrow \widehat B \approx {180^ \circ } - {79^ \circ } - {47^ \circ }20' = {53^ \circ }40'\end{array}\)

15 tháng 9 2021

Vì \(\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}\) nên \(\widehat{A}-2\widehat{B}+\widehat{C}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}-2\widehat{B}+\widehat{C}=0^0\left(1\right)\\\widehat{A}+\widehat{B}+\widehat{C}=180^0\left(2\right)\end{matrix}\right.\)

Trừ \(\left(2\right)\) cho \(\left(1\right)\), ta được \(3\widehat{B}=180^0\Rightarrow\widehat{B}=60^0\)

\(\Rightarrow\widehat{A}+\widehat{C}=120^0\)

Vậy GTLN của \(\widehat{A}\) là \(119^0\) vì \(\widehat{C}>0\)

24 tháng 9 2021

$\widehat{ABC}$