K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2015

Chắc = 0 Thanh Trang Lưu Bùi nha

NV
4 tháng 10 2019

Đặt \(\sqrt{3x}=t\ge0\Rightarrow x=\frac{t^2}{3}\)

\(Q\left(t\right)=\frac{-2t}{3+\frac{t^2}{3}}=\frac{-6t}{t^2+9}\)

\(\Rightarrow Q'\left(t\right)=\frac{-6\left(t^2+9\right)+12t^2}{\left(t^2+9\right)^2}=\frac{6\left(t^2-9\right)}{\left(t^2+9\right)^2}\)

\(Q'\left(t\right)=0\Rightarrow t=3\)

\(Q\left(0\right)=0\) ; \(Q\left(3\right)=-1\)

Dựa vào BBT, ta thấy \(Q_{min}=-1\) khi \(t=3\Rightarrow x=3\)

4 tháng 10 2019

Con on ban nhieu nhaok

2 tháng 10 2015

A = \(\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)

  = \(\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)

  = \(\sqrt{x-4}+2+l\sqrt{x-4}-2l\)

(+) với \(l\sqrt{x-4}-2l=\sqrt{x-4}-2\) khi \(x\ge8\)

=> A = \(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)

(+) \(l\sqrt{x-4}-2l=2-\sqrt{x-4}\) khi \(4\le x\le8\)

=> A = \(\sqrt{x-4}+2+2-\sqrt{x-4}=4\)

 

2 tháng 10 2015

1) Áp dụng bất đẳng thức Cô - si với 4 số \(\frac{5x}{3};\frac{5x}{3};\frac{5x}{3};\frac{1}{x^3}\) dương ta có:

 \(B=\frac{5x}{3}+\frac{5x}{3}+\frac{5x}{3}+\frac{1}{x^3}\ge4\sqrt[4]{\frac{5x}{3}.\frac{5x}{3}.\frac{5x}{3}.\frac{1}{x^3}}=4\sqrt[4]{\frac{125}{27}}\)

=> B nhỏ nhất bằng \(4\sqrt[4]{\frac{125}{27}}\) khi \(\frac{5x}{3}=\frac{1}{x^3}\) => x= 3/5 => x = \(\sqrt[4]{\frac{3}{5}}\)

2) ĐK : x > 4

\(A=\sqrt{\left(x-4\right)+2\sqrt{x-4}.2+4}+\sqrt{\left(x-4\right)-2\sqrt{x-4}.2+4}\)

\(A=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)

\(A=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)

+) Nếu \(\sqrt{x-4}\ge2\) => x - 4 > 4 => x > 8 thì \(A=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)

+) Nếu \(\sqrt{x-4}

6 tháng 7 2019

\(A=\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\left(Đk:x\ge0;x\ne1\right)\)

\(=\frac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x\sqrt{x}+16\sqrt{x}-x-16}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x\left(\sqrt{x}-1\right)+16\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x+16}{\sqrt{x}+3}\)

6 tháng 7 2019

Ta có:\(\frac{x+16}{\sqrt{x}+3}=\frac{x-9+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)

Vì \(x>0\Rightarrow\sqrt{x}+3>0\)

Áp dụng BĐT cô-si cho hai số dương  \(\sqrt{x+3}\)\(\frac{25}{\sqrt{x}+3}\)ta có:

\(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right).\frac{25}{\sqrt{x}+3}}\)

\(\Rightarrow A\ge4\)

\(\Rightarrow MinA=4\Leftrightarrow\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\Leftrightarrow\left(\sqrt{x}+3\right)^2=25\Leftrightarrow x=4\left(TMĐK\right)\)