cho tam giác ABCcân tại A có AB =5cm,BC=6cm ,đường cao AH. Gọi M,N lần lượt là trung điểm AB,AC lấy P sao cho N là trung điểm MP ,lấy Q sao cho N là trung điểm HQ .gọi O là giao điểm của AH và MN
a)tính độ dài NM
b)chứng minh tứ giác MNCB là hình thang cân
c)chứng minh tứ giác MPCBà hình bình hành ,AHCP là hcn
d) tứ giác AMHC là hình gì?vì sao?
e) chứng minh 3 điểm B,O,Q thẳng hàng
a: Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>MN//BC và \(MN=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
b: Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
Hình thang BMNC có \(\widehat{MBC}=\widehat{NCB}\)
nên BMNC là hình thang cân
c: Ta có: \(MN=\dfrac{BC}{2}\)
mà \(MN=\dfrac{MP}{2}\)
nên BC=MP
Ta có: MN//BC
P\(\in\)MN
Do đó: MP//BC
Xét tứ giác MBCP có
MP//BC
MP=BC
Do đó: MBCP là hình bình hành
Sửa đề: Chứng minh AHCQ là hình chữ nhật
Xét tứ giác AHCP có
N là trung điểm chung của AC và HP
=>AHCP là hình bình hành
Hình bình hành AHCP có \(\widehat{AHC}=90^0\)
nên AHCP là hình chữ nhật
d: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Xét ΔBAC có
H,M lần lượt là trung điểm của BC,BA
=>HM là đường trung bình của ΔBAC
=>HM//AC và HM=AC/2
Tứ giác AMHC có HM//AC
=>AMHC là hình thang
e:
Ta có: \(HM=\dfrac{AC}{2}\)
\(AN=\dfrac{AC}{2}\)
Do đó: HM=AN
Xét tứ giác AMHN có
HM//AN
HM=AN
Do đó: AMHN là hình bình hành
=>AH cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và MN
Ta có: AHCQ là hình chữ nhật
=>AQ//HC và AQ=HC
Ta có: AQ//HC
H\(\in\)BC
Do đó: AQ//HB
ta có: AQ=HC
HB=HC
Do đó: AQ=HB
Xét tứ giác ABHQ có
AQ//BH
AQ=BH
Do đó: ABHQ là hình bình hành
=>AH cắt BQ tại trung điểm của mỗi đường