K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 12 2023

Lời giải:
Để pt có 2 nghiệm thì: $\Delta'=1-k\geq 0\Leftrightarrow k\leq 1$
Áp dụng định lý Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:

$x_1+x_2=-2$

$x_1x_2=k$

$x_1,x_2\neq 0\Leftrightarrow x_1x_2\neq 0\Leftrightarrow k\neq 0$

Khi đó:

$\frac{1}{x_1}+\frac{1}{x_2}=\frac{1}{4}$

$\Leftrightarrow \frac{x_1+x_2}{x_1x_2}=\frac{1}{4}$

$\Leftrightarrow \frac{-2}{k}=\frac{1}{4}\Leftrightarrow k=-8$ (tm)

19 tháng 12 2017

Xét phương trình x 2 – (2m – 3)x + m 2 – 3m = 0 có a = 1 0 và

∆ = ( 2 m – 3 ) 2   –   4 ( m 2 – 3 m ) = 9 > 0    

Phương trình luôn có hai nghiệm phân biệt x 1 ;   x 2

Áp dụng định lý Vi-ét ta có: x 1 + x 2 = 2 m – 3 ; x 1 . x 2 = m 2 – 3 m

Ta có 1 < x 1 < x 2 < 6

⇔ x 1 − 1 x 2 − 1 > 0 x 1 + x 2 > 1 x 1 − 6 x 2 − 6 > 0 x 1 + x 2 < 12 ⇔ x 1 x 2 − x 1 + x 2 + 1 > 0 x 1 + x 2 > 1 x 1 x 2 − 6 x 1 + x 2 + 36 > 0 x 1 + x 2 < 12 ⇔ m 2 − 3 m − 2 m + 3 + 1 > 0 2 m − 3 > 1 m 2 − 3 m − 6 2 m − 3 + 36 > 0 2 m − 3 < 12 ⇔ m 2 − 5 m + 4 > 0 2 m > 4 m 2 − 15 m + 54 > 0 2 m < 15 ⇔ m < 1 m > 4 m > 2 m < 6 m > 9 m < 15 2

⇔ 4 < m < 6

Đáp án: D

27 tháng 7 2017

c) Để phương trình (1) có hai nghiệm x1 và x2 ⇔ Δ' ≥ 0 ⇔ 4 - m ≥ 0 ⇔ m ≤ 4

Theo Vi-et ta có: Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có: x 1 2 + x 2 2  = 10 ⇔ x 1 + x 2 2 - 2x1x2 = 10

⇔ - 4 2 - 2m = 10 ⇔ 16 - 2m = 10 ⇔ m = 3 (TM)

Vậy với m = 3 thì phương trình (1) có hai nghiệm thõa mãn:  x 1 2 + x 2 2  = 10

16 tháng 2 2022

bạn đăng tách ra cho mn giúp nhé 

a, Để pt có 2 nghiệm pb 

\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

\(x_1-3x_2=0\)(3) 

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)

Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)

16 tháng 2 2022

\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)

\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)

\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)

\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)

\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)

2 tháng 8 2017

Phương trình x 2 – 2(m + 4)x + m 2 – 8 = 0 có a = 1  0 và

∆ ' = ( m + 4 ) 2 – ( m 2 – 8 ) = 8 m + 24

Phương trình có hai  x 1 ;   x 2 ⇔ ∆ ' ≥ 0 ⇔ 8 m + 24 ≥ 0

Áp dụng định lý Vi – ét ta có x 1 + x 2   = 2 ( m + 4 ) ;   x 1 . x 2 = m 2   –   8

Ta có:

A = x 1 + x 2 − 3 x 1 x 2

= 2 (m + 4) – 3 ( m 2 – 8) = 3 m 2 + 2m + 32 =  − 3 m 2 − 2 3 m − 32 3

= − 3 m − 1 3 2 + 97 3

Nhận thấy A ≤ 97 3  và dấu “=” xảy ra khi m − 1 3 = 0 ⇔ m = 1 3  (TM)

Vậy giá trị lớn nhất của A là 97 3 khi  m = 1 3

Đáp án: A

Δ=(-2)^2-4(m-1)=4-4m+4=8-4m

Để phương trình có hai nghiệm thì 8-4m>=0

=>m<=2

x1+x2=2; x1x2=m-1

=>x1=2-x2

=>x1+1=3-x2

x1^2+x2^2=(x1+x2)^2-2x1x2=2^2-2(m-1)=4-2m+2=6-2m

=>x1^2=6-2m-x2^2

2x1(x1-x2)+3=7m+(x2+2)^2

=>2x1^2-2x1x2+3=7m+x2^2+2x2+4

=>2(6-2m-x2^2)-2x1x2+3-7m-x2^2-2x2-4=0

=>2(6-2m-x2^2)-2x2(3-x2)-7m-1=0

=>12-4m-2x2^2-6x2-2x2^2-7m-1=0

=>-4x2^2-6x2-11m+11=0

=>4x2^2+6x2+11m-11=0(1)

Để phương trình (1) có nghiệm thì 6^2-4*4*(11m-11)>=0

=>36-16(11m-11)>=0

=>16(11m-11)<=36

=>11m-11<=9/4

=>11m<=53/4

=>m<=53/44

5 tháng 8 2017

Phương trình x 2 + 2x + m – 1 = 0 có a = 1  0 và ∆ '  = 1 2 – (m – 1) = 2 – m

Phương trình có hai nghiệm  x 1 ;   x 2 ⇔ ∆ ' ≥ 0 ⇔ 2 – m ≥ 0 ⇔ m ≤ 2

Áp dụng định lý Vi – ét ta có x 1 + x 2 = − 2 ( 1 ) ; x 1 . x 2 = m – 1 ( 2 )

Theo đề bài ta có: 3 x 1 + 2 x 2 = 1 ( 3 )

Từ (1) và (3) ta có:

x 1 + x 2 = − 2 3 x 1 + 2 x 2 = 1 ⇔ 2 x 1 + 2 x 2 = − 4 3 x 1 + 2 x 2 = 1 ⇔ x 1 = 5 x 2 = − 7

Thế vào (2) ta được: 5.(−7) = m – 1  m = −34 (thỏa mãn)

Đáp án: A

a) Khi m = -5 ta được phương trình x2 + 4x - 5 = 0

Ta có a + b + c = 1 + 4 + (-5) = 0 nên phương trình có hai nghiệm phân biệt là x1 = 1; x2= c/a = (-5)/1 = -5

Tập nghiệm của phương trình S = {1; -5}

b) Δ' = 22 - m = 4 - m

Phương trình có nghiệm kép ⇔ Δ'= 0 ⇔ 4 - m = 0 ⇔ m = 4

c) Để phương trình (1) có hai nghiệm x1 và x2 ⇔ Δ' ≥ 0 ⇔ 4 - m ≥ 0 ⇔ m ≤ 4

Theo Vi-et ta có: Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có: x12 + x22 = 10 ⇔ (x1 + x2)2 - 2x1x2 = 10

⇔ (-4)2 - 2m = 10 ⇔ 16 - 2m = 10 ⇔ m = 3 (TM)

a: Khi m=-5 thì pt sẽ là x^2-5x-6=0

=>x=6 hoặc x=-1

b:

Δ=(-5)^2-4(m-1)=25-4m+4=-4m+29

Để pt có hai nghiệm thì -4m+29>=0

=>m<=29/4

x1-x2=3

=>(x1-x2)^2=9

=>(x1+x2)^2-4x1x2=9

=>5^2-4(m-1)=9

=>4(m-1)=25-9=16

=>m-1=4

=>m=5(nhận)

c: 2x1-3x2=5 và x1+x2=5

=>x1=4 và x2=1

x1*x2=m-1

=>m-1=4

=>m=5(nhận)