Chứng tỏ rằng
55a+45b chia hết cho 5 (a, b là số tự nhiên)
400a+84b cia hết cho 4 (a, b là số tự nhiên)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 55a có tận cùng là 0 hoặc 5
45b có tân cụng là 0 hoặc 5
nên 55a+45b có tận cụng là 0 hoặc 5 mà giả thiết cho là 3658 nên loại
Câu hỏi của đồng tiến đạt - Toán lớp 6 - Học toán với OnlineMath
Bài 1:
a: \(\Leftrightarrow n+2+4⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(4\right)\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
b: \(\Leftrightarrow2n+4-1⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1\right\}\)
hay \(n\in\left\{-1;-3\right\}\)
a.
\(n+6⋮n+2\)
\(\Rightarrow n+2+4⋮n+2\)
\(\Rightarrow4⋮n+2\)
\(\Rightarrow n+2\inƯ\left(4\right)\)
\(\Rightarrow n+2\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow n\in\left\{-6;-4;-3;-1;0;2\right\}\)
\(n\in N\)
\(\Rightarrow n\in\left\{0;2\right\}\)
b.
\(2n+3⋮n+2\)
\(\Rightarrow2n+4-1⋮n+2\)
\(\Rightarrow2\times\left(n+2\right)-1⋮n+2\)
\(\Rightarrow1⋮n+2\)
\(\Rightarrow n+2\inƯ\left(1\right)\)
\(\Rightarrow n+2\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{-3;-1\right\}\)
mà n thuộc N
nên không tìm được giá trị của n thỏa mãn yêu cầu đề ^^
Phương @ An Bạn làm hộ bài 2 của bạn này cho mình. Bài này nhiều người hỏi rồi nên mình ngại làm lại lắm !!! Còn bài 1 thì mình đã giúp bạn ý rồi.
Bài 1 : Xét chữ số tận cùng. Mình chỉ hướng dẫn làm thôi nhá !!!
a) 56a có tận cùng là các chữ số chẵn : 0; 2; 4; 6; 8
45b có tận cùng là 0 hoặc 5
nên 56a + 45b có tận cùng là các chữ số chẵn hoặc các chữ số 5; 7; 9; 1; 3
Do đó chỉ xét 45b có tận cùng là 0 do đó 56a có tận cùng là 8 để được tổng là 3658
=> a có tận cùng là 8 và b là số chẵn
Xét a trong khoảng 8 < a < 58 (với a là số có tận cùng là 8)
=> a \(\in\) {8; 18; 28; 38; 48; 58}
Thử từng trường hợp a được 56a. Rồi tiếp tục được 45b = 3658 - 56a
Ra kết quả bao nhiêu mà số đó chia hết cho 45 thì tìm được b.
Cuối cùng được kết luận : a = 38; b = 34
b) tương tự
a) Ta có: a chia 9 dư 4 => đặt a =9k+4
b chia 9 dư 5 => đặt b=9t+5
=> a+b = 9k+4+9t+5 = 9(k+t+1) chia hết cho 9
b) Ta có: c chia 9 dư 8 => đặt c=9n+8
=> b+c = 9t+5+9n+8 = 9(t+n+1) +4
=> b+c chia 9 dư 4
Câu a: vì tổng của 2 số dư của a+b=9 nên t có : a+b chia hết cho 9 và 4+5 chia hết cho 9 nên suy ra a+b chia hết cho 9 b: dư4