cho tam giác ABC có AB = AC. M là trung điểm BC
a, CMR: tam giác AMB = tam giác ANC
b, Lấy D thuộc AB. Từ d kẻ vuông góc với AM tại K và kéo dài cắt AC tại E. CMR: AD = AE.
c, Trên tia đối của tia ED lấy F sao cho EF = MC. Gọi H là trung điểm EC
CMR: M,H,F thẳng hàng
tam giác ABC. AB = AC, B = C
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔAMB=ΔAMC
=>\(\widehat{BAM}=\widehat{CAM}\)
=>\(\widehat{DAK}=\widehat{EAK}\)
=>AK là phân giác của góc DAE
Xét ΔADE có
AK là đường cao
AK là đường phân giác
Do đó: ΔADE cân tại A
c: Xét ΔBAC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
mà F\(\in\)DE và M\(\in\)BC
nên EF//MC
Xét tứ giác EFCM có
EF//CM
EF=CM
Do đó: EFCM là hình bình hành
=>EC cắt FM tại trung điểm của mỗi đường
mà H là trung điểm của EC
nên H là trung điểm của FM
=>F,H,M thẳng hàng