K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

Vì 1/6<1/5;1/7<1/5:1/8<1/5;1/9<1/5

=>1/5+1/6+1/7+1/8+1/9<1/5.2=1(1)

Vậy 1/5+1/6+1/7+1/8+1/9<1

Lại có: 1/10<1/8;1/11<1/8;1/12<1/8;1/13<1/18;1/14<1/8;1/15<1/8;1/16<1/8;1/17<1/8

=>1/10+1/11+1/12+1/13+1/14+1/15+1/16+1/17<1/8.8=1

Vậy 1/10+1/11+1/12+1/13+1/14+1/15+1/16+1/17<1(2)

Từ (1) và (2)

=>1/5+1/6+1/7+...+1/17<2

Vậy 1/5+1/6+1/7+...+1/17<2

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

Ta có :

\(\frac{1}{5^2}>\frac{1}{5.6}\)

\(\frac{1}{6^2}>\frac{1}{6.7}\)

\(..............\)

\(\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\left(1\right)\)

Lại có :

\(\frac{1}{5^2}< \frac{1}{4.5}\)

\(\frac{1}{6^2}< \frac{1}{5.6}\)

\(...............\)

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\left(2\right)\)

Từ (1) và (2) => Điều phải chứng minh

29 tháng 6 2019

#)Giải :

Áp dụng công thức dãy số cách đều :

Dãy số A có (199 - 1) : 2 + 1 = 100 số hạng

Vậy tổng A = (199 + 1) x 100 : 2 = 10000

Vì 10000 là số chính phương => A là số chính phương

29 tháng 6 2019

Số số hạng có trong dãy là :

( 199 - 1 ) : 2 + 1 = 100 ( số hạng )

Tổng của A là :

\(\frac{\left(199+1\right).100}{2}=10000\)

Ta có : 10000 = 1002

=> A là 1 số chính phương ( đpcm )

28 tháng 8 2021

KHO THE

19 tháng 9 2021

\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)

\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)

\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)