K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2023

(m+5)x+2m-10=0

=>(m+5)x=-2m+10

TH1: m<>-5

=>Phương trình có nghiệm duy nhất là \(x=\dfrac{-2m+10}{m+5}\)

TH2: m=-5

Phương trình sẽ trở thành:

\(0x=-2\cdot\left(-5\right)+10=10+10=20\)

=>\(x\in\varnothing\)

NV
20 tháng 9 2021

c.

\(\Leftrightarrow cos\left(x+12^0\right)+cos\left(90^0-78^0+x\right)=1\)

\(\Leftrightarrow2cos\left(x+12^0\right)=1\)

\(\Leftrightarrow cos\left(x+12^0\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+12^0=60^0+k360^0\\x+12^0=-60^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=48^0+k360^0\\x=-72^0+k360^0\end{matrix}\right.\)

2.

Do \(-1\le sin\left(3x-27^0\right)\le1\) nên pt có nghiệm khi:

\(\left\{{}\begin{matrix}2m^2+m\ge-1\\2m^2+m\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m+1\ge0\left(luôn-đúng\right)\\2m^2+m-1\le0\end{matrix}\right.\)

\(\Rightarrow-1\le m\le\dfrac{1}{2}\)

NV
20 tháng 9 2021

a.

\(\Rightarrow\left[{}\begin{matrix}x+15^0=arccos\left(\dfrac{2}{5}\right)+k360^0\\x+15^0=-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-15^0+arccos\left(\dfrac{2}{5}\right)+k360^0\\x=-15^0-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

b.

\(2x-10^0=arccot\left(4\right)+k180^0\)

\(\Rightarrow x=5^0+\dfrac{1}{2}arccot\left(4\right)+k90^0\)

AH
Akai Haruma
Giáo viên
27 tháng 5 2023

Lời giải:
1. 

Khi $m=-1$ thì pt trở thành: $x^2+4x+2=0$

$\Leftrightarrow (x+2)^2=2$

$\Leftrightarrow x+2=\pm \sqrt{2}$

$\Leftrightarrow x=-2\pm \sqrt{2}$

2.

Ta thấy: $\Delta'=(m-1)^2+2m=m^2+1>0$ với mọi $m\in\mathbb{R}$

Do đó pt luôn có 2 nghiệm pb với mọi $m$

Áp dụng định lý Viet:

$x_1+x_2=2(m-1)$

$x_1x_2=-2m$

Khi đó:

$x_1^2+x_1-x_2=5-2m=3-2(m-1)=3-x_1-x_2$

$\Leftrightarrow x_1^2+2x_1-3=0$

$\Leftrightarrow (x_1-1)(x_1+3)=0$

$\Leftrightarrow x_1=1$ hoặc $x_1=-3$

Nếu $x_1=1$

$\Leftrightarrow x_2+1=2m-2$ và $x_2=-2m$

$\Rightarrow 2x_2+1=-2$

$\Leftrightarrow x_2=\frac{-3}{2}$

$-2m=x_1x_2=\frac{-3}{2}$

$m=\frac{3}{4}$

-------------

Nếu $x_1=-3$

$\Leftrightarrow x_2-3=2m-2$ và $-3x_2=-2m$

$\Leftrightarrow m=\frac{-3}{4}$

\(\Delta=\left(2m-4\right)^2-4\left(2m-5\right)\)

\(=4m^2-16m+16-8m+20\)

\(=4m^2-24m+36=\left(2m-6\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m

30 tháng 6 2020

\(x^3-2\left(m+1\right)x^2-\left(2m+5\right)x+10+12m=0\)

<=> \(\left(x-2\right)\left(x^2-2mx-5-6m\right)=0\)

<=> \(\orbr{\begin{cases}x=2\\x^2-2mx-5-6m=0\left(1\right)\end{cases}}\)

Để phương trình ban đầu có 3 nghiệm phân biệt <=> phương trình (1) có 2 nghiệm phân biệt khác 2 

<=> \(\hept{\begin{cases}\Delta'=m^2+5+6m>0\\2^2-2m.2-5-6m\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\in\left(-\infty;-5\right)v\left(-1;+\infty\right)\\m\ne-\frac{1}{10}\end{cases}}\)

25 tháng 12 2021

\(a,PT\Leftrightarrow\left(1-2m\right)x=m+4\)

Bậc nhất \(\Leftrightarrow1-2m\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)

\(b,x=2\Leftrightarrow2-4m-m-4=0\Leftrightarrow m=-\dfrac{2}{5}\\ c,m=5\Leftrightarrow-9x-9=0\Leftrightarrow x=-1\)

25 tháng 12 2021

cứu mik với

8 tháng 4 2021

a, \(x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Vậy tập nghiệm của phương trình là S = { 1 ; 3 } 

b, Ta có : \(\Delta=\left(2m+2\right)^2-4\left(2m-5\right)=4m^2+8m+4-8m+20=4m^2+24>0\forall m\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=2m-5\end{cases}}\)

Ta có : \(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x_2^2-2mx_2-x_1+2m-3\right)=19.1=1.19\)

TH1 : \(\hept{\begin{cases}x_1^2-2mx_1-x_2+2m-3=19\\x_2^2-2mx_2-x_1+2m-3=1\end{cases}}\)

Lấy phương trình (1) + (2) ta được : 

\(x_1^2+x_2^2-2mx_1-2mx_2-x_2-x_1+4m-6=20\)

mà \(\left(x_1+x_2\right)^2=4m^2+8m+4\Rightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)

\(=4m^2+8m+4-2\left(2m-5\right)=4m^2+4m-6\)

\(\Leftrightarrow4m^2+4m-6-2m\left(2m-2\right)-\left(2m-2\right)+4m-6=20\)

\(\Leftrightarrow4m^2+4m-6-4m^2+4m-2m+2+4m-6=20\)

\(\Leftrightarrow10m=30\Leftrightarrow m=3\)tương tự với TH2, nhưng em ko chắc lắm vì dạng này em chưa làm bao giờ 

30 tháng 6 2021

x=1 và x=3

3:

\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)

=4m^2-4m+1+8m+44

=4m^2+4m+45

=(2m+1)^2+44>=44>0

=>Phương trình luôn có hai nghiệm pb

|x1-x2|<=4

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)

=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)

=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)

=>0<=4m^2+4m+45<=16

=>4m^2+4m+29<=0

=>(2m+1)^2+28<=0(vô lý)

24 tháng 12 2017

Điều kiện để phương trình đã cho là phương trình đường tròn là: 

m − 3 2 2 + ​   2 m + ​ 1 2 2 − ( 3 m + ​ 10 ) > 0 ⇔ m 2 − 6 m + ​ 9 4 + ​​​   4 m 2 + ​ 4 m + ​ 1 4 − 3 m − 10 > 0 ⇔ 5 m 2 − 2 m + ​ 10 4 ​​​  − 3 m − 10 > 0 ⇔ 5 m 2 − 2 m + 10 − 12 m − 40 > ​   0 ⇔ 5 m 2    − 14 m − 30 > ​ 0 ⇔ m < ​ 7 − 199 5 m > 7 + ​   199 5

Với điều  kiện trên phương trình đã cho là  phương trình đường tròn  có  tâm  I − m − 3 2 ;    − 2 m + 1 2

Do tâm I nằm trên đường thẳng ∆:   x + 2y + 5 = 0 nên ta có:

− m − 3 2 +   ​ 2.   − 2 m + 1 2 + ​   5 = 0 ⇔ − ( m − 3 ) + ​   2 ( ​ − 2 m − 1 ) + 2.5 = 0 ⇔ − m + ​ 3    − 4 m − 2 +   ​ 10 = 0    ⇔ − 5 m   ​ + ​ 11 = 0 ⇔ m   =    11 5

Kết hợp điều kiện, suy ra không có giá trị nào của m thỏa mãn,

Chú ý. Nhiều học sinh quên điều kiện để phương trình là phương trình của một đường tròn nên dẫn đến kết quả m = 11/5

ĐÁP ÁN D