Cho đường tròn tâm O, điểm A nằm bên ngoài đường tròn. Kể các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Gọi I là giao điểm của OA và BC a)chứng minh tam giác ABC cân b) Chứng minh OA vuông góc với BC c) Tính độ dài Bl, biết OB = 3 cm; OA = 5 cm d) Chứng minh rằng: AB²-OC²=AI²-OI²
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\)
b: Ta có: \(\widehat{ABI}+\widehat{OBI}=\widehat{OBA}=90^0\)
\(\widehat{HBI}+\widehat{OIB}=90^0\)(ΔHBI vuông tại H)
mà \(\widehat{OBI}=\widehat{OIB}\)
nên \(\widehat{ABI}=\widehat{HBI}=\widehat{CBI}\)
=>BI là phân giác của góc ABC
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AO là phân giác của góc BAC
Xét ΔBAC có
AH,BI là các đường phân giác
AH cắt BI tại I
Do đó: I là tâm đường tròn nội tiếp ΔBAC
a, Để chứng minh \(OH \times OA = \pi^2\), chúng ta có thể sử dụng định lí thứ ba của đường tròn và định lí Euclid về tiếp tuyến và tiếp tuyến ngoại tiếp.
Gọi \(R\) là bán kính của đường tròn, \(O\) là tâm của đường tròn, \(A\) là điểm nằm ngoài đường tròn, \(B\) và \(C\) là các điểm tiếp tuyến từ \(A\) đến đường tròn. \(H\) là giao điểm giữa \(OA\) và \(BC\).
Theo định lí thứ ba của đường tròn, ta có \(OH\) là đoạn trung bình của \(OA\) trong tam giác \(OAB\). Điều này có nghĩa là \(OH\) là trung bình hòa của các phần bằng nhau \(OA\) và \(OB\).
\(OA = OB = R\) (bán kính của đường tròn).
\(OH = \frac{OA + OB}{2} = \frac{2R}{2} = R\).
Vậy, \(OH = R\).
Để chứng minh \(OH \times OA = \pi^2\), ta có \(OH \times OA = R \times R = R^2\).
Nhưng theo định nghĩa, \(R\) là bán kính của đường tròn, nên \(R^2\) chính là \(\pi^2\) (bán kính mũ hai). Vì vậy, \(OH \times OA = \pi^2\).
b, Để chứng minh \(I\) là tâm của đường tròn nội tiếp tam giác \(ABC\), chúng ta có thể sử dụng các định lí về tiếp tuyến và tiếp tuyến ngoại tiếp.
Gọi \(I\) là giao điểm của \(OA\) với đường tròn. Khi đó, theo định lí về tiếp tuyến ngoại tiếp, \(OA\) vuông góc với \(AB\) tại \(B\) và \(OA\) vuông góc với \(AC\) tại \(C\).
Vì OA là đường trung trực của BC (do H là giao điểm giữa OA và BC, nên OH cũng là đường trung trực của BC.)
Nếu I là tâm của đường tròn nội tiếp tam giác ABC, thì OI cũng là đường trung trực của BC
Do đó, OHvà OI là cùng một đường trung trực của BC, nên OH = OI.
Vậy, I là tâm của đường tròn nội tiếp tam giác ABC.
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
=>ΔABC cân tại A
b: OB=OC
AB=AC
Do đó: AO là trung trực của BC
=>AO vuông góc với BC
a) Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên ΔABC cân tại A.
Lại có AO là tia phân giác của góc A nên AO ⊥ BC. (trong tam giác cân, đường phân giác cũng là đường cao)
b) Gọi I là giao điểm của AO và BC. Suy ra BI = IC (đường kính vuông góc với một dây).
Xét ΔCBD có :
CI = IB
CO = OD (bán kính)
⇒ BD // HO (HO là đường trung bình của BCD) ⇒ BD // AO.
c) Theo định lí Pitago trong tam giác vuông OAC:
A C 2 = O A 2 – O C 2 = 4 2 – 2 2 = 12
=> AC = √12 = 2√3 (cm)
Do đó AB = BC = AC = 2√3 (cm).
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>ΔABC cân tại A
b: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại I và I là trung điểm của BC
c: Xét ΔOBA vuông tại B có \(BO^2+BA^2=OA^2\)
=>\(BA^2+3^2=5^2\)
=>\(BA^2=25-9=16\)
=>\(BA=\sqrt{16}=4\left(cm\right)\)
Xét ΔBOA vuông tại B có BI là đường cao
nên \(BI\cdot OA=BO\cdot BA\)
=>\(BI\cdot5=3\cdot4=12\)
=>BI=12/5=2,4(cm)
d: Ta có: ΔABI vuông tại I
=>\(IB^2+AI^2=AB^2\)
=>\(IB^2=AB^2-AI^2\left(3\right)\)
Ta có: ΔOIC vuông tại I
=>\(OC^2=OI^2+CI^2\)
=>\(CI^2=OC^2-OI^2\left(4\right)\)
I là trung điểm của BC
=>IB=IC(5)
Từ (3),(4),(5) suy ra \(AB^2-AI^2=OC^2-OI^2\)
=>\(AB^2-OC^2=AI^2-OI^2\)