K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2023

a: Xét ΔAMC vuông tại M và ΔBMC vuông tại M có

MC chung

MA=MB

Do đó: ΔAMC=ΔBMC

b: Ta có: ΔAMC=ΔBMC

=>CA=CB

Ta có: ΔAMC=ΔBMC

=>\(\widehat{CAM}=\widehat{CBM}\)

24 tháng 12 2018

có ai giúp mình bài này k

a) Xét ∆AMB và ∆AMC có : 

BM =  MC ( M là trung điểm BC )

AM chung 

AB = AC 

=> ∆AMB = ∆AMC (c.c.c)

b) Vì AB = AC 

=> ∆ABC cân tại A 

Mà AM là trung tuyến 

=> AM \(\perp\)BC 

Mà a\(\perp\)AM 

=> a//BC ( từ vuông góc tới song song )

c) Vì CN//AM (gt)

AN//MC ( a//BC , M thuộc BC)

=> ANCM là hình bình hành 

=> NC = AM , AN = MC

Mà AMC = 90° 

=> ANCM là hình chữ nhật 

=> NAM = AMC = MCN =  CNA = 90° 

Xét ∆ vuông NAC và ∆ vuông MCA có : 

AN = MC

AM = CN

=> ∆NAC = ∆MCA (ch-cgv)

d) Vì ANCM là hình chữ nhật (cmt)

=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)

13 tháng 12 2023

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có; ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

c: Xét ΔABI vuông tại B và ΔACI vuông tại C có

AI chung

AB=AC

Do đó: ΔABI=ΔACI

=>IB=IC

d: Ta có: IB=IC

=>I nằm trên đường trung trực của BC(1)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là trung trực của BC(2)

Từ (1) và (2) suy ra A,M,I thẳng hàng

2 tháng 1 2019

x y A B C M D E

Giải :a) Ta có BD // Ay (gt)

=> góc DBM = góc A (so le trong)

mà góc A = 900 => góc BDM = 900

Xét tam giác AMC và tam giác BMD

có góc A = góc DBM = 900 (cmt)

   MA = MB(gt)

  góc AMC = góc BMD ( đối đỉnh)

=> tam giác AMC = tam giác BMD (g.c.g)

b) Ta có : tam giác AMC = tam giác BMD (cm câu a)

=> MC = MD ( hai cạnh tương ứng)

Xét tam giác MEC và tam giác MED

có MC = MD (cmt)

   CME = DME (gt)

 ME : chung

=> tam giác MEC = tam giác MED (c.g.c)

=> góc CEM = góc DEM (hai góc tương ứng) 

Mà tia EM nằm giữa ED và EC

=> EM là tia p/giác của góc DEC (Đpcm)

c) Ta có : tam giác AMC = tam giác BMD (cm câu a)

=> BD = AC ( hai cạnh tương ứng)

Mà DE = BD + BE

hay AC + BE = DE 

=> BE = DE - AC (1)

Ta lại có tam giác MEC = tam giác MED (cm câu b)

=> EC = ED (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra BE = CE - AC (Đpcm)

5 tháng 2 2017

xét tam giác amb và tam giác amc có

AB=AC(GT)

BM=MC(GT)

AM CHUNG(GT)

=> TAM GIÁC AMB = TAM GIÁC AMC (CCC)

AI K MK MK K LAI 3 K