K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

Áp dụng BĐT AM-GM ta có:

\(ab\le\frac{\left(a+b\right)^2}{4}\le\frac{1}{4}\)

Và \(P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)

\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+15\left(\frac{1}{16a^2}+\frac{1}{16b^2}\right)\)

\(\ge2\sqrt{a^2\cdot\frac{1}{16a^2}}+2\sqrt{b^2\cdot\frac{1}{16b^2}}+15\cdot2\sqrt{\frac{1}{16a^2}\cdot\frac{1}{16b^2}}\)

\(=\frac{1}{2}+\frac{1}{2}+15\cdot2\cdot\frac{1}{16ab}\)\(\ge1+15\cdot2\cdot\frac{1}{16\cdot\frac{1}{4}}=\frac{17}{2}\)

Xảy ra khi \(a=b=\frac{1}{2}\)

29 tháng 4 2018

We have : \(A=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)

By Cauchy - Schwarz and AM - GM have :

\(A\ge\frac{\left(1+1\right)^2}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}=\frac{6}{\left(a+b\right)^2}\ge6\)

Then greatest posible of A is 6 when \(a=b=\frac{1}{2}\)

18 tháng 5 2017

đặt x = a; y = b/2; z = c/3. khi đó ta có \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\le1.\)

quy đồng, nhân chéo ta được (1+x)(1+y) + (1+y)(1+z) + (1+z)(1+x) \(\le\)(1+x)(1+y)(1+z).

nhân phá ngoặc, rút gọn ta được x + y + z + 2 \(\le\)xyz. (1)

mặt khác ta có \(1\ge\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}\ge\frac{9}{x+y+z+3}\)

nên x+ y + z \(\ge\)6 (2)

từ (1) và (2) suy ra xyz \(\ge\)8 hay S = abc \(\ge\)48.

dấu bằng xảy ra khi x = y = z = 2 hay a = 2; b = 4; c = 6.

vậy Min S = 48.

19 tháng 5 2017

hình như cái BĐT ở dưới chỗ "Mặc khác ta có" sai

25 tháng 4 2019

Đầu tiên,ta chứng minh BĐT phụ \(\frac{\left(x+y\right)^2}{2}\ge2xy\Leftrightarrow\frac{\left(x+y\right)^2-4xy}{2}\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng).Dấu "=" xảy ra khi x = y.

Và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\).Áp dụng BĐT AM-GM(Cô si),ta có; \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{\left(x+y\right)}{2}}=\frac{4}{x+y}\)

Dấu "=" xảy ra khi x = y

\(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)\(\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}\ge4+\frac{1}{\frac{1}{2}}=6\)

Dấu "=" xảy ra khi a = b và a + b = 1 tức là a=b=1/2

Vậy Min P = 6 khi a = b = 1/2 

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

22 tháng 2 2020

\(A=\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\ge\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)}+\frac{4}{ab\left(a+b\right)}\)

\(\ge\left(\frac{1}{a^2-ab+b^2}+\frac{1}{ab}+\frac{1}{ab}+\frac{1}{ab}\right)+\frac{1}{ab}\)

\(\ge\frac{\left(1+1+1+1\right)^2}{\left(a+b\right)^2}+\frac{1}{ab}\ge\frac{16}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{4}}\ge16+4=20\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)

28 tháng 5 2018

\(A\ge\frac{9}{a+2+b+2+c+2}+\frac{1}{9abc}\)

\(\Rightarrow A\ge\frac{9}{7}+\frac{1}{9abc}\)

Theo BĐT AM-GM ta có: \(1=a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow abc\le\frac{1}{27}\)

\(\Rightarrow\frac{1}{9abc}\ge3\)

Do đó ta có: 

\(A\ge\frac{9}{7}+3=\frac{30}{7}\)

14 tháng 5 2019

Mình cũng đang làm 

bài này và cũng chưa

biết cách giải 

mong các bạn giúp với

17 tháng 4 2020

\(A=\text{∑}_{cyc}\frac{a}{a^2+1}+\frac{1}{9abc}=\text{∑}_{cyc}\frac{1}{a+\frac{1}{a}}+\frac{1}{9abc}\)

\(\ge\frac{9}{\text{∑}_{cyc}\left(a+\frac{1}{a}\right)}+\frac{1}{9abc}=P\)

Ta có \(P=\frac{9}{\frac{1}{a+b+c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}+\frac{1}{9abc}\)(Vì a + b + c = 1)

\(\ge\frac{9}{\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{9}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}+\frac{1}{9abc}\)

\(=\frac{81}{10}.\frac{abc}{ab+bc+ca}+\frac{1}{9abc}\)

\(\Rightarrow P\ge2\sqrt{\frac{3}{ab+bc+ca}}-\frac{21}{10}\ge2\sqrt{\frac{3}{\frac{\left(a+b+c\right)^2}{3}}}-\frac{21}{10}=\frac{39}{10}\)

\(\Rightarrow A\ge P\ge\frac{39}{10}\)

Dấu "=" khi và chỉ khi a = b = c = \(\frac{1}{3}\)