cho tam giác ABC vuông cân tại A. tia phân giác góc B và C lần lướt cắt AC, AB tại D, E và cắt nhau ở F.
a) BE = CD
b) FD = FE
c) AF vuông với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét △ABC vuông tại A (gt)
=> BC2 = AB2 + AC2 (định lý Pytago)
BC2 = 52 + 122 = 25 + 144 = 169
=> BC = \(\sqrt{169}\) = 13 cm
Xét △ABC có BF là tia phân giác của góc ABC (gt)
=>\(\dfrac{AF}{AB}\) = \(\dfrac{FC}{BC}\) (tính chất đường phân giác)
=>\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) và AF + FC = AC = 12
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) = \(\dfrac{AF+FC}{5+13}\) = \(\dfrac{AC}{18}\) = \(\dfrac{2}{3}\)
=> AF = \(\dfrac{2}{3}\) x 5 = 3,33 cm và FC = \(\dfrac{2}{3}\) x 13 = 8,67 cm
b)Xét △ABF và △HBE có:
góc ABF bằng góc HBE (BF là tia phân giác của góc ABC)
góc BAF bằng góc BHE bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)
=> △ABF ∼ △HBE (g.g)
c) Vì △ABF ∼ △HBE (câu b)
=> góc BFA bằng góc BEH
mà góc AEF bằng góc BEH (2 góc đối đỉnh)
=> góc BFA bằng góc AEF
=> △AEF cân tại A
d)Xét △ABC và △AHB có:
góc ABC chung
góc BAC bằng góc BHA bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)
=> △ABC ∼ △HBA (g.g)
=> \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (1)
Xét △ABH có BE là tia phân giác của góc ABC (gt)
=>\(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (2) (tính chất đường phân giác)
Từ (1), (2) => \(\dfrac{AB}{BC}\) = \(\dfrac{HE}{AE}\)
=> AB.AE=BC.HE(chắc vậy?)
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
Suy ra: BA=BE và DA=DE
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
SUy ra: AF=EC và DF=DC (1)
c: Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BF=BC(2)
Từ (1) và (2) suy ra BD⊥CF
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBF}\) chung
Do đó: ΔBEF=ΔBAC
Suy ra: BF=BC
a: Xét ΔABF có
AE vừa là đường cao, vừa là phân giác
nen ΔABF cân tại A
b: Xét tứ giác HFKD có
HF//DK
HF=DK
Do đó: HFKD là hình bình hành
=>DH//KF và DH=KF
c: Xét ΔABC co AB<AC
nên góc C<góc ABC
gócDCB=gócEBC=góc1/2ACB=góc1/2ABC
a)xét tg DCB và tg EBC có
BC là cạnh chung
góc B=góc C
góc DCB=góc EBC
suy ra tg DCB = tg EBC(g.c.g)
suy ra CD=BE(hai cạnh tương ứng)
xét tgADC và tgAEB có
góc A là góc chung là góc vuông
AB=AC
DC=EB
suy ra tgADC = tgAEB (ch.cgv)
suy ra AD=AE(hai cạnh tương ứng)
câu b và câu c k xong đi rồi nói
bạn tự vẽ hình nha
tam giác BAC vuông can tại a suy ra bac=90,abc=acb=45 và ab=ac
gọi I là giao điểm của các tia phân giác trong tam giác ABC suy ra AI là tia phân giác của tg ABC
gọi G là giao điểm của dh và bi,n là giao diem của ak và be
BE,CD lân lượt là tia phân giác của tg ABC suy ra abe=cbe=acd=bcd=22.5
suy ra tg BIC cân tại i suy ra ib=ic
cmđ tg dgb=hgb(g c g) suy ra db=bh
cmđ tg dbi=hbi(c g c) suy ra di =ih và bdi=bhi
cmđ tg abn=kbn( g c g) suy ra ab=bk
ta có bd+da=ba
va bh+hk=bk
mà bd=bh,ba=bk
suy ra da=hk
ta có bdc=bac+acd=90+22.5=112.5
mà bdc=bhi
suy ra bhi=112.5 suy ra ihk=67.5
và ida=67.5
cmđ tg ida=ihk(cg c) suy ra da=hk và ia=ik
cmd dib=45 mà dib=eic(2 góc đối đỉnh) suy ra eic=45 độ cmđ tg dib=eic(g c g) suy ra db=ec
ta có db+da=ab
và ec+ea=ac
mà db=ec,ab=ac
nên ad=ae
cmđ tg dai=eai(c g c) suy ra dia=eia
cmđ dia=eia=67.5
ta có adi=aid=67.5 suy ra tg dai cân tai a suy ra ad=ai mà ad=hk và ai=ik suy ra hk=ik (1)
cmđ ikh=45(do hik=ihk=67.5/tam giác cân )
cmđ kic=22.5
ta có kic=cki=22.5 suy ra tg ikc cân tại k suy ra ik=kc(2)
từ 1 và 2 suy ra hk=kc
chỗ nào ko hiểu thì cứ hỏi mình ,tab cho mình nếu đúng nha
a: ta có: CE là phân giác của góc ACB
=>\(\widehat{ACE}=\widehat{ECB}=\dfrac{\widehat{ACB}}{2}\left(1\right)\)
Ta có: BD là phân giác của góc ABC
=>\(\widehat{ABD}=\widehat{CBD}=\dfrac{1}{2}\cdot\widehat{ABC}\left(2\right)\)
Ta có: ΔABC cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{ABD}=\widehat{CBD}=\widehat{ACE}=\widehat{BCE}\)
Xét ΔECB và ΔDBC có
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
\(\widehat{ECB}=\widehat{DBC}\)
Do đó: ΔECB=ΔDBC
=>BE=CD
b: Xét ΔFBC có \(\widehat{FBC}=\widehat{FCB}\)
nên ΔFBC cân tại F
=>FB=FC
Ta có: ΔECB=ΔDBC
=>EC=DB
Ta có: EF+FC=EC
BF+FD=BD
mà EC=BD và BF=FC
nên EF=FD
c: ta có: AB=AC
=>A nằm trên đường trung trực của BC(4)
Ta có: FB=FC
=>F nằm trên đường trung trực của BC(5)
Từ (4) và (5) suy ra AF là đường trung trực của BC
=>AF\(\perp\)BC