\(tínhhợplí:\left(1,2-\sqrt{\dfrac{1}{4}:1\dfrac{1}{20}+\left|-\dfrac{3}{4}\right|-\left(-\dfrac{3}{2}\right)^2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\dfrac{1}{2}-\dfrac{6}{5}\right):\dfrac{21}{20}-\dfrac{25}{4}+\dfrac{1}{2}=\dfrac{-7}{10}\cdot\dfrac{20}{21}-\dfrac{23}{4}\)
\(=\dfrac{-2}{3}-\dfrac{23}{4}=\dfrac{-8-69}{12}=-\dfrac{77}{12}\)
g: \(=\left(-\sqrt{5}-2\right)\left(\sqrt{5}-2\right)\)
=-(căn 5+2)(căn 5-2)
=-(5-4)=-1
h: \(=\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\dfrac{\sqrt{30}}{3}\right)\left(\dfrac{\sqrt{30}}{5}+\sqrt{2}-\dfrac{4}{5}\sqrt{5}\right)\)
=4/5*căn 10+4/3*căn 6-16/15*căn 15+2/5*căn 15+2-4/5*căn 10+30/15+2/3*căn 15-4/3*căn 6
=4
Bài 2:
a: \(=\sqrt{2}-\dfrac{2}{5}\sqrt{2}+2\sqrt{2}+2\sqrt{2}=\dfrac{23}{5}\sqrt{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{6}{5}\right):\dfrac{21}{20}-\dfrac{25}{4}+\dfrac{1}{2}\)
\(=\dfrac{-7}{10}\cdot\dfrac{20}{21}-\dfrac{25}{4}+\dfrac{2}{4}\)
\(=\dfrac{-2}{3}-\dfrac{23}{4}=\dfrac{-8-69}{12}=\dfrac{-77}{12}\)
\(\left(\sqrt{\dfrac{1}{4}}-1,2\right):1\dfrac{1}{20}-\left(-\dfrac{5}{2}\right)^2+\left|1,25-\dfrac{3}{4}\right|\)
\(=-\dfrac{7}{10}:\dfrac{21}{20}-\dfrac{25}{4}+\left|\dfrac{1}{2}\right|\)
\(=-\dfrac{7}{10}.\dfrac{20}{21}-\dfrac{25}{4}+\dfrac{1}{2}\)
\(=-\dfrac{2}{3}-\dfrac{25}{4}+\dfrac{1}{2}\)
\(=-\dfrac{77}{12}\)
a: Ta có: \(\left(4\sqrt{2}-\dfrac{11}{2}\sqrt{8}-\dfrac{1}{3}\sqrt{288}+\sqrt{50}\right)\cdot\left(\dfrac{1}{2}\sqrt{2}\right)\)
\(=\dfrac{1}{2}\sqrt{2}\cdot\left(4\sqrt{2}-11\sqrt{2}-4\sqrt{2}+5\sqrt{2}\right)\)
\(=\dfrac{1}{2}\sqrt{2}\cdot6\sqrt{2}=3\)
e: \(=\dfrac{5^{30}\cdot3^{20}}{3^{15}\cdot5^{30}}=3^5=243\)
\(\dfrac{1}{\sqrt{k}+\sqrt{k+1}}=\dfrac{\sqrt{k}-\sqrt{k+1}}{k-k-1}=\sqrt{k+1}-\sqrt{k}\\ \Leftrightarrow\text{Đặt}\text{ }A=\dfrac{1}{3\left(\sqrt{2}+\sqrt{1}\right)}+\dfrac{1}{5\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{1}{4021\left(\sqrt{2011}+\sqrt{2010}\right)}< \dfrac{1}{2\left(\sqrt{2}+\sqrt{1}\right)}+\dfrac{1}{2\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{1}{2\left(\sqrt{2011}+\sqrt{2010}\right)}\\ \Leftrightarrow A< \dfrac{1}{2}\left(\dfrac{1}{\sqrt{2}+\sqrt{1}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{2011}+\sqrt{2010}}\right)\)
\(\Leftrightarrow A< \dfrac{1}{2}\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2011}-\sqrt{2010}\right)\\ \Leftrightarrow A< \dfrac{1}{2}\left(\sqrt{2011}-1\right)< \dfrac{1}{2}\cdot\dfrac{\sqrt{2011}-1}{\sqrt{2011}}=\dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2011}}\right)\)