K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2023

a: Xét tứ giác OPMQ có

\(\widehat{OPM}+\widehat{OQM}=90^0+90^0=180^0\)

=>OPMQ là tứ giác nội tiếp đường tròn đường kính OM

=>M,P,O,Q cùng nằm trên đường tròn đường kính OM

b: Xét (O) có

ΔPQA nội tiếp

PA là đường kính

Do đó: ΔPQA vuông tại Q

=>AQ\(\perp\)QP tại Q

=>AQ\(\perp\)PB tại Q

Xét ΔAPB vuông tại A có AQ là đường cao

nên \(PQ\cdot PB=PA^2=\left(2R\right)^2=4R^2\)

11 tháng 12 2023

Cảm ơn bạn , nhưng còn 1 ý của câu b) bạn giúp mình với 

 

30 tháng 5 2017

Đáp án C

Xét tam giác AOB có AO = OB = R nên tam giác AOB cân tại O (1)

Theo tính chất hai tiếp tuyến cắt nhau có OM là đường phân giác của góc AOB (2)

Từ (1) và (2) suy ra: OM là đường trung trực của AB.

Ta có điểm N thuộc đường trung trực của AB nên NA = NB

Suy ra, tam giác NAB là tam giác cân tại N

cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CDA/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội...
Đọc tiếp

cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CD
A/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội tiếp

B/ chứng minh MA2 =MC.MD và tứ giác OHCD nội tiếp
C/ trên cung nhỏ AD lấy điểm N sao cho DN=BD . qua C vẽ đường thẳng song song với DN cắt đường thẳng MN tại E và cũng qua C vẽ đường thẳng song song viws BD cắt cạnh A tại F . chứng minh CEF cân
câu này hơi dài , cảm ơn mấy bạn vì công đọc , sai thì thôi, đúng thì ok  , nhưng cảm ơn mn vì đọc cái bài dài này nhá :))

0

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA^2=MC*MD=MH*MO

=>MC/MO=MH/MD

=>ΔMCH đồng dạng với ΔMOD

=>góc MCH=góc MOD

=>góc HOD+góc HCD=180 độ

=>HODC nội tiếp

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB

b: góc CAE=1/2*180=90 độ

Xét ΔOAM vuông tại A và ΔCAS vuông tại A có

góc AOM=góc ACS

=>ΔOAM đồng dạng với ΔCAS

18 tháng 1 2021

Nhờ các mod xóa giùm bài kia. Gõ $\LaTeX$ bị sai.

Sửa đề. Chứng minh CD // OM.

Ta có:

$$\widehat{COM}=\dfrac{\widehat{BOC}}{2} =\dfrac{180^o-\widehat{DOC}}{2}=\widehat{OCD}$$

(vì $\Delta OCD$ cân tại $O$ do $OC=OD=R.$)

Nên CD//OM (hai góc so le trong bằng nhau)

18 tháng 1 2021

Hình vẽ:

18 tháng 1 2024

Câu a),b) tự làm nhé , mình chỉ giúp câu c) thôi . 

OI vuông góc NP ( Do I là trung điểm của MP ) , OF vuông góc NP ( Do OF là đường trung trực của NP )
=> O,I,F thẳng hàng
Tam giác ONF vuông tại N , đường cao NI
=> ON^2 = OI.OF
Mà ON=OA
OA^2 = OH.OM
=> OH.OM=OI.OF
=> OH/OI=OF/OM
Xét tam giác OIM và tam giác OHF có
góc MOF chung
OH/OI=OF/OM
=> Tam giác OIM đồng dạng tam giác OHF
=> góc OHF=góc OIM (=90 độ )
OH vuông HF
mà OH vuông AB
=> A,B,F thẳng hàng
=> F nằm trên đường thẳng cố định AB khi đường thẳng d quay quanh M mà vẫn thỏa mãn các yêu cầu đề bài
Điều phải chứng minh