K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

\(M=\frac{a^{30}+a^{20}+a^{10}+1}{a^{2012}\left(a^{30}+a^{20}+a^{10}+1\right)+\left(a^{30}+a^{20}+a^{10}+1\right)}\)

\(M=\frac{1}{a^{2012}+1}\)

11 tháng 8 2017

\(\frac{a^{30}+a^{20}+a^{10}+1}{a^{2042}+a^{2032}+a^{2022}+a^{2012}+a^{30}+a^{20}+a^{10}+1}=\frac{a^{30}+a^{20}+a^{10}+1}{a^{2042}+a^{2032}+a^{2022}+a^{2012}}+1=\frac{1}{a^{2012}}+1\)

=\(\frac{a^{2012}+1}{a^{2012}}\)

\(=\dfrac{a^{20}\left(a^{10}+1\right)+\left(a^{10}+1\right)}{\left(a^{10}+1\right)\left(a^{2032}+a^{2012}+a^{20}+1\right)}\)

\(=\dfrac{a^{20}+1}{\left(a^{20}+1\right)\left(a^{2012}+1\right)}=\dfrac{1}{a^{2012}+1}\)

b: 12/20+6/18=3/5+1/3=9/15+5/15=14/15

c: 8/12+20/30=2/3+2/3=4/3

d: 10/12+12/36=5/6+2/6=7/6

12 tháng 1 2020

\(A=\frac{1}{10}-\left(\frac{1}{20}+\frac{1}{30}+....+\frac{1}{90}\right)=\frac{1}{10}-\left(\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{9.10}\right)\)

\(=\frac{1}{10}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...-\frac{1}{10}\right)=\frac{1}{10}-\left(\frac{1}{4}-\frac{1}{10}\right)=\frac{1}{5}-\frac{1}{4}=\frac{-1}{20}\)

12 tháng 1 2020

\(A=\frac{1}{10}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}-\frac{1}{90}\)

\(A=\frac{1}{10}-\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}\right)\)

\(A=\frac{1}{10}-\left(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}\right)\)

\(A=\frac{1}{10}-\left(\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=\frac{1}{10}-\left[\left(\frac{1}{4}-\frac{1}{10}\right)-\left(\frac{1}{5}-\frac{1}{5}\right)-...-\left(\frac{1}{9}-\frac{1}{9}\right)\right]\)

\(A=\frac{1}{10}-\frac{1}{4}+\frac{1}{10}\)

\(A=\frac{1}{5}-\frac{1}{4}\)

\(A=-\frac{1}{20}\)

19 tháng 3 2018

\(M=\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}+\frac{1}{a^2-11a+30}\) 

\(M=\frac{1}{\left(a-2\right)\left(a-3\right)}+\frac{1}{\left(a-3\right)\left(a-4\right)}+\frac{1}{\left(a-4\right)\left(a-5\right)}+\frac{1}{\left(a-5\right)\left(a-6\right)}\)

\(M=\frac{1}{a-2}-\frac{1}{a-3}+\frac{1}{a-3}-\frac{1}{a-4}+\frac{1}{a-4}-\frac{1}{a-5}+\frac{1}{a-5}-\frac{1}{a-6}\)

\(M=\frac{1}{a-2}-\frac{1}{a-6}\)