Cho đường tròn (O;R) và một điểm A nằm ngoài (O).Từ A kẻ hai tiếp tuyến AM,AN của (O) (M,N là hai tiếp điểm) a) Tam giác AMN là tam giác gì?Vì sao? b) Đường thẳng vuông góc với OM tại O cắt đường thẳng AN tại P. Chứng minh AP=PO c)Gọi H là giao điểm của AO và MN.Chứng mình OH×OA=R2
Giúp mik với ạ!
a: Xét (O) có
AM,AN là tiếp tuyến
Do đó: AM=AN và OA là phân giác của góc MON
Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
b: Ta có: \(\widehat{POA}+\widehat{MOA}=\widehat{MOP}=90^0\)
\(\widehat{PAO}+\widehat{NOA}=90^0\)(ΔNOA vuông tại N)
mà \(\widehat{MOA}=\widehat{NOA}\)(OA là phân giác của góc MON)
nên \(\widehat{POA}=\widehat{PAO}\)
=>ΔPAO cân tại P
c: Ta có: AM=AN
=>A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OA là đường trung trực của MN
=>OA\(\perp\)MN tại H
Xét ΔOMA vuông tại M có MH là đường cao
nên \(OH\cdot OA=OM^2=R^2\)