hai vòi nước chảy vào bể không có nước sau 3 giờ đầy bể . Người ta mở hai vòi cùng chảy 30 phút thì khóa vòi 1 để vòi 2 chảy tiếp 10 giờ nữa thì đầy bể . Hỏi nếu vòi 2 chảy riêng thì sau bao lâu sẽ đầy bể nước ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi: 30'=0,5 giờ
Sau 0,5h thì 2 vòi chảy được số phần bể là: \(\frac{0,5}{3}=\frac{1}{6}\)(bể)
Số phần bể còn lại là: \(1-\frac{1}{6}=\frac{5}{6}\)(bể)
Như vậy sau 10 giờ thì vòi 2 chảy được 5/6 bể
=> Thời gian để vòi 2 chảy đầy bể là: \(\frac{10x6}{5}=12\left(giờ\right)\)
=> Sau 3 giờ thì vòi 2 chảy được số phần bể là: \(\frac{3}{12}=\frac{1}{4}\left(bể\right)\)
=> Sau 3 giờ thì vòi 1 chảy được số phần bể là: \(1-\frac{1}{4}=\frac{3}{4}\left(bể\right)\)
=> Thời gian để vòi 1 chảy đầy bể là: \(\frac{3x4}{3}=4\left(giờ\right)\)
Đáp số: Vòi 1=4 giờ; Vòi 2=12 giờ
Gọi thời gian chảy riêng một mình đầy bể của vòi 1 và vòi 2 lần lượt là a(giờ) và b(giờ)(ĐK: a>0 và b>0)
Trong 1h, vòi 1 chảy được \(\dfrac{1}{a}\)(bể)
Trong 1h, vòi 2 chảy được \(\dfrac{1}{b}\left(bể\right)\)
Trong 1h, hai vòi chảy được: \(\dfrac{1}{3}\left(bể\right)\)
Do đó, ta có: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{3}\left(1\right)\)
Trong 30p thì vòi 1 chảy được: \(\dfrac{1}{2}\cdot\dfrac{1}{a}\left(bể\right)\)
Trong 10h30p thì vòi 2 chảy được \(\dfrac{1}{10,5}\cdot\dfrac{1}{b}=\dfrac{2}{21}\cdot\dfrac{1}{b}\left(bể\right)\)
Theo đề, ta có: \(\dfrac{1}{2}\cdot\dfrac{1}{a}+\dfrac{2}{21}\cdot\dfrac{1}{b}=1\)(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{2}\cdot\dfrac{1}{a}+\dfrac{2}{21}\cdot\dfrac{1}{b}=1\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{2}\cdot\dfrac{1}{a}+\dfrac{2}{21}\cdot\dfrac{1}{b}=1\\\dfrac{1}{2}\cdot\dfrac{1}{a}+\dfrac{1}{2}\cdot\dfrac{1}{b}=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{17}{42}b=\dfrac{5}{6}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=-\dfrac{35}{17}\left(loại\right)\\a=\dfrac{122}{51}\end{matrix}\right.\)
=>Đề sai rồi bạn
Mỗi giờ vòi thứ nhất chảy riêng được số phần bể là:
\(1\div5=\frac{1}{5}\)(bể)
Mỗi giờ vòi thứ hai chảy riêng được số phần bể là:
\(1\div7=\frac{1}{7}\)(bể)
Cả hai vòi mỗi giờ chảy được số phần bể là:
\(\frac{1}{5}+\frac{1}{7}=\frac{12}{35}\)(bể)
Vòi thứ nhất chảy riêng sau \(2\)giờ thì còn số phần bể chưa có nước là:
\(1-\frac{1}{5}\times2=\frac{3}{5}\)(bể)
Hai vòi cùng chảy đầy bể sau số giờ là:
\(\frac{3}{5}\div\frac{12}{35}=1,75\)(giờ)
ta sẽ có số giờ đầy bể là:
5x2x2=20
đáp số:20
Gọi thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là a,b
Theo đề, ta có: 1/a+1/b=1/12 và 4/a+18/b=1
=>a=28 và b=21
Gọi thời gian vòi một chảy một mình thì đầy bể là \(x\left(x>12\right)\) (giờ)
Thời gian vòi hai chảy một mình thì đầy bể là \(y\left(y>12\right)\) (giờ)
Trong một giờ vòi một chảy được \(\dfrac{1}{x}\) (bể)
Trong một giờ vòi hai chảy được \(\dfrac{1}{y}\) (bể)
Hai vòi cùng chảy vào một bể không có nước thì sau \(12\) giờ thì đầy bể
\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\left(1\right)\)
Người ra mở cả hai vòi chảy trong \(4\) giờ được \(4\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{4}{x}+\dfrac{4}{y}\) bể và để vòi một chảy tiếp trong \(14\) giờ nữa thì vòi một chảy được \(\dfrac{14}{x}\) bể
\(\Rightarrow\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{14}{x}=1\)
\(\Rightarrow\dfrac{18}{x}+\dfrac{4}{y}=1\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{18}{x}+\dfrac{4}{y}=1\end{matrix}\right.\)
Giải hệ phương trình trên ta được \(\left\{{}\begin{matrix}x=21\\y=28\end{matrix}\right.\) (thỏa mãn điều kiện)
Vậy thời gian vòi một chảy một mình thì đầy bể là \(21\) giờ, thời gian vòi hai chảy một mình thì đầy bể là \(28\) giờ.
Gọi thời gian vòi 1 và vòi 2 chảy một mình mình đầy bể lần lượt là x,y
Theo đề, ta có hệ phương trình:
1/x+1/y=1/1,5 và 1/4*1/x+1/3*1/y=1/5
=>1/x=4/15 và 1/y=2/5
=>x=15/4 và y=5/2