Cho tam giác ABC vuông tại A. AB = 8, AC = 15. Đường cao AH. D đối xứng với B qua H. Vẽ đường tròn đường kính CD cắt AC tại E.
HE là tiếp tuyến đường tròn đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi M là trung điểm của CD
=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm
=>MD=ME
=>ΔMDE cân tại M
=>góc MED=góc MDE
Xét ΔABD có
AH vừa là đường cao, vừa là đường trung tuyến
nên ΔABD cân tại A
=>AH là phân giác của góc BAD
=>góc BAH=góc DAH
Xét tứ giác AHDE có
góc AHD+góc AED=180 độ
nên AHDE là tứ giác nội tiếp
=>góc DAH=góc DEH
=>góc DEH=góc BAH=góc C
=>góc MEH=góc C+góc CDE=90 độ
=>HE là tiếp tuyến của (M)
b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)
CD=BC-2x64/17=161/17(cm)
EM=161/17:2=161/34(cm)
MH=MD+DH=BC/2=8,5cm
=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)
a: Gọi M là trung điểm của CD
=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm
=>MD=ME
=>ΔMDE cân tại M
=>góc MED=góc MDE
Xét ΔABD có
AH vừa là đường cao, vừa là đường trung tuyến
nên ΔABD cân tại A
=>AH là phân giác của góc BAD
=>góc BAH=góc DAH
Xét tứ giác AHDE có
góc AHD+góc AED=180 độ
nên AHDE là tứ giác nội tiếp
=>góc DAH=góc DEH
=>góc DEH=góc BAH=góc C
=>góc MEH=góc C+góc CDE=90 độ
=>HE là tiếp tuyến của (M)
b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)
CD=BC-2x64/17=161/17(cm)
EM=161/17:2=161/34(cm)
MH=MD+DH=BC/2=8,5cm
=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)
a) Gọi O là trung điểm của CD.
Do E nằm trên đường tròn (O) nên ^DEC=90o hay DE⊥AC.
Thế thì DE//AB.
Gọi M là trung điểm AE, xét hình thang ABDE có: H là trung điểm BD và M là trung điểm AE nên HM là đường trung bình của hình thang.
Vậy nên HM//AB//DE hay HM⊥AE.
Suy ra tam giác HAE cân tại H hay ^HEA=^HAE.
Tam giác OEC cân tại O nên ^OEC=^OCE.
Từ đó ta có: ^HEA+^OEC=^HAE+^OCE=90o.
Suy ra ^OEH=180o−90o=90o.
Vậy nên là tiếp tuyến của đường tròn (O).
b) Xét tam giác ABC vuông tại A, áp dụng định lý Pi-ta-go, ta có:
BC=√AB2+AC2=17(cm)
Do tam giác HAE cân tại H nên:
HE = AH = (AB*AC)/BC=120/17
a) Gọi O là trung điểm của CD.
Do E nằm trên đường tròn (O) nên hay .
Thế thì DE//AB.
Gọi M là trung điểm AE, xét hình thang ABDE có: H là trung điểm BD và M là trung điểm AE nên HM là đường trung bình của hình thang.
Vậy nên HM//AB//DE hay
Suy ra tam giác HAE cân tại H hay .
Tam giác OEC cân tại O nên .
Từ đó ta có:
Suy ra
Vậy nên là tiếp tuyến của đường tròn (O).
b) Xét tam giác ABC vuông tại A, áp dụng định lý Pi-ta-go, ta có:
Do tam giác HAE cân tại H nên:
HE = AH =
Gọi M là trung điểm của CD
=>M là tâm của đường tròn đường kính CD
=>E thuộc (M)
Xét (M) có
ΔCED nội tiếp
CD là đường kính
Do đó: ΔCED vuông tại E
=>DE\(\perp\)EC tại E
=>DE\(\perp\)AC tại E
Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
TA có: ΔABD cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAD
=>\(\widehat{BAH}=\widehat{DAH}\)
Xét tứ giác AHDE có
\(\widehat{AHD}+\widehat{AED}=90^0+90^0=180^0\)
=>AHDE là tứ giác nội tiếp
=>\(\widehat{DEH}=\widehat{DAH}\)
mà \(\widehat{DAH}=\widehat{BAH}\)
nên \(\widehat{DEH}=\widehat{BAH}\)
mà \(\widehat{BAH}=\widehat{C}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{DEH}=\widehat{C}\)
Ta có: ME=MD
=>ΔMED cân tại M
=>\(\widehat{MED}=\widehat{MDE}\)
=>\(\widehat{MED}=\widehat{CDE}\)
\(\widehat{HEM}=\widehat{HED}+\widehat{MED}\)
\(=\widehat{CDE}+\widehat{C}\)
\(=90^0\)
=>HE\(\perp\)EM tại E
Xét (M) có
ME là bán kính
HE\(\perp\)ME tại E
Do đó: HE là tiếp tuyến của (M)